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8 DIFFERENTIAL EQUATIONS 
8.1 THE CONCEPT OF DIFFERENTIAL EQUATIONS 

Definition: Differential equation 

A differential equation is an equation that involves both an unknown function and its derivatives 
or differentials.  

There are ordinary and partial differential equations. 

Definition:  Ordinary differential equation 

A differential equation for a one variable function is called an ordinary differential equation. 

The general form of an ordinary differential equation can be written as 

𝐹𝐹�𝑥𝑥,𝑦𝑦,𝑦𝑦′, 𝑦𝑦′′,𝑦𝑦′′′, … ,𝑦𝑦(𝑛𝑛)� = 0  

or  

𝐹𝐹 �𝑥𝑥,𝑦𝑦,
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

,
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑥𝑥2

,
𝑑𝑑3𝑦𝑦
𝑑𝑑𝑥𝑥3

, … ,
𝑑𝑑𝑛𝑛𝑦𝑦
𝑑𝑑𝑥𝑥𝑛𝑛

� = 0 

where   y(x) is an unknown function and y′ = dy
dx

, y′′ = d2y
dx2

, … , y(n) = dny
dxn

  are derivatives of the 
function y(x). 

Example 8.1   
The following two equations,  

 y′ + xy = x3 

y" − 5y′ + 6y = 13sin (3x) 

are ordinary differential equations for an unknown one-variable function y=y(x).  

These equations can be also written as: 

dy
dx

+ xy = x3   

d2y
dx2

− 5
dy
dx

+ 6y = 13sin (3x) 
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Definition: Partial differential equation 

A differential equation for a function of several variables is called a partial differential 
equation (PDE). PDE contains partial derivatives.  

Example 8.2   
The equation of a string vibration  

∂2U
∂t2

= a2
∂2U
∂x2

 

is a partial differential equation for the function of two variables U=U(x,t).  

In this topic only ordinary differential equations of the first and second order will be considered. 

Definition: Order of a differential equation 

An order of a differential equation is the order of the highest derivative it contains. 

Example 8.3   

  The first order ODE:                   𝑦𝑦′ + 𝑥𝑥𝑦𝑦 = 𝑥𝑥3          

  The second order ODE:             𝑦𝑦" − 5𝑦𝑦′ + 6𝑦𝑦 = 13𝑠𝑠𝑠𝑠𝑠𝑠 (3𝑥𝑥)  

  The third order ODE:                 𝑦𝑦′′′ − 𝑥𝑥 𝑙𝑙𝑠𝑠(𝑥𝑥) = 0      

Definition: Solution of a differential equation 

The solution of a differential equation is any function that satisfies given equation identically. 

It means that the given equation becomes identical after substituting its solution into the 
differential equation. 

Definition:  General and particular solutions of a differential equation 

A solution of an ordinary differential equation of order n, which involves exactly n (maximum 
number) of essential arbitrary constants is called a general solution. 

A solution of a differential equation obtained by substituting the defined numerical values 
instead of arbitrary constants in the general solution of a differential equation is called a 
particular solution. 
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Definition:  Singular solution of a differential equation 

A solution of an ordinary differential equation that does not contain arbitrary constants and 
cannot be obtained from the general solution is called a singular solution of a differential 
equation. 
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8.2 FIRST-ORDER DIFFERENTIAL EQUATIONS 
The main concept for first-order differential equations will be given in this chapter. The separable 

variable equations and first-order linear differential equations with their solving methods will be 
considered in detail. Two solving methods of first-order linear differential equations will be presented, 
i.e. the method of variation of constants and the Bernoulli method (solving by using substitution).  

8.2.1 Main concept of first-order differential equations 
An ordinary differential equation of the first order can be given in the following standard forms: 

a) in implicit form     

𝐹𝐹(𝑥𝑥,𝑦𝑦,𝑦𝑦′) = 0, 

b) in explicit form 

𝑦𝑦′ = 𝑓𝑓(𝑥𝑥,𝑦𝑦) 

c) in the differential form, since 𝑦𝑦′ = 𝑑𝑑𝑦𝑦/𝑑𝑑𝑥𝑥  

𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥 + 𝑄𝑄(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑦𝑦 = 0 

where 𝑓𝑓(𝑥𝑥,𝑦𝑦),  𝑃𝑃(𝑥𝑥,𝑦𝑦),  𝑄𝑄(𝑥𝑥,𝑦𝑦)  are functions of x and y, in general. 

We also point out that  𝑓𝑓(𝑥𝑥,𝑦𝑦) = −𝑃𝑃(𝑥𝑥,𝑦𝑦)/𝑄𝑄(𝑥𝑥,𝑦𝑦). 

Example 8.4   

Let us consider a differential equation that is given in the implicit form: 

(𝑥𝑥2 + 1)𝑦𝑦′ − 2𝑥𝑥𝑦𝑦 − 3𝑥𝑥 = 0 

This equation can be written in explicit form: 

𝑦𝑦′ =
2𝑥𝑥𝑦𝑦 + 3𝑥𝑥
𝑥𝑥2 + 1

 

We can also obtain this equation in a differential form, if we substitute  dy/dx  instead of y′ 
into the first equation and multiply both its sides by dx:   

(2𝑥𝑥𝑦𝑦 + 3𝑥𝑥)𝑑𝑑𝑥𝑥 − (𝑥𝑥2 + 1)𝑑𝑑𝑦𝑦 = 0 

The general solution of a first-order differential equation involves one arbitrary constant C and it can 
be written in the explicit form   𝑦𝑦′ = 𝜑𝜑(𝑥𝑥,𝐶𝐶) or in the implicit form Ф(𝑥𝑥,𝑦𝑦,𝐶𝐶) = 0.  

 

 

Definition: General integral 
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The general solution of a differential equation in the implicit form Ф(x, y, C) = 0 is called a 
general integral. 

We get a particular solution of a differential equation if we substitute a defined number instead of a 
constant C into the general solution.  
 
Example 8.5   

Let us consider one of the easiest first-order differential equations: 

y′ = 2x. 

To find the unknown function y(x) we use integration with respect to x, taking into account that 
y = ∫ y′dx . As a result, we have  

y = � 2xdx = x2 + C 

where C is an integration constant. 

The function y = x2 + C  is the general solution of the given differential equation, since it 
satisfies the given equation, i.e. y′ = (x2 + C)′ = 2x,  and contains one essential arbitrary 
constant C.  

Assigning particular values to the arbitrary constant C in the general solution, we get so-called 
particular solutions. For instance,   

y = x2 − 2    is the particular solution which corresponds to C = −2  ,   

y = x2 − 1    is the particular solution which corresponds to C = −1  ,   

 y = x2           is the particular solution which corresponds to C = 0 ,   

 y = x2 + 1    is the particular solution which corresponds to C = 1 , 

  y = x2 + 2   is the particular solution which corresponds to C = 2 .   

Visualization of the obtained solutions, presents a set of parabolas, where each parabola 
corresponds to a particular value of the constant C (see Fig.1). 
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Figure 8.1 

Due to the arbitrary constant C, the general solution is not just one function, but a set of 
functions. To each specific numerical value of the constant C in the general solution there 
corresponds one particular solution.  

It is often necessary to find only one particular solution from a set of solutions. In this case, a 
differential equation is given together with an additional condition 𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0, which means 
that a value of the unknown function is equal to 𝑦𝑦0 at some particular value 𝑥𝑥0 of the argument. 
This additional condition is called an initial condition. 

Definition: Initial value problem 

The initial value problem (Cauchy problem) is a problem which involves an ordinary 
differential problem F(x, y, y′) = 0 together with an initial condition y(x0) = y0 which 
specifies the value of an unknown function at a given point x0. That is a problem of finding a 
particular solution of the differential equation that satisfies the initial condition y(x0) = y0. 

Thus, the solutions to a differential equation can be viewed as a family of solution curves in the 
x y-plane. Besides, from a geometric point of view, the initial condition 𝑦𝑦(𝑥𝑥0) = 𝑦𝑦0 is the same 
as a point (𝑥𝑥0, 𝑦𝑦0) that the solution curve must pass through. 

 

An initial value problem is solved in the following way 

1. Find a general solution to the given differential equation that involves an arbitrary constant C. 

2. Substitute 𝑥𝑥0 and 𝑦𝑦0 from the initial condition into the general solution instead of x and y. 

3. Solve the obtained equation with respect to C. 

4. Substitute the result back into the general solution. 

Example 8.6   

Let us take the differential equation from Example 8.5 and consider it as an initial value problem 
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y′ = 2x  and     y(−2) = 6. 

Thus, the task is to find a particular solution of the given differential equation that satisfies the 
initial condition y(−2) = 6, which means that at x=-2, the value of the solution function is y=6. 

The general solution of the differential equation from Example 8.5 is 

y = x2 + C 

In order to find the corresponding C value, we substitute x = −2  and y = 6 (i.e. the initial 
condition) into the general solution: 

6 = (−2)2 + C 

6 = 4 + C 

C = 2 

The solution of the initial value problem is found by substituting the obtained C value into the 
general solution. It means that the particular solution which satisfies the given initial condition 
is: 

y = x2 + 2 

The graphical interpretation of the result (see Fig.1) means that from the set of curves, only the 
curve  y = x2 + 2 which goes through the point M(-2,6), must be selected. 

 

There are different types of the first order differential equations which are solved by different 
methods. Separable variable equations and linear equations and their respective solutions are 
discussed below. 

 

8.2.2 Separable variable equations 
 
Consider a differential equation given in the form y′ = f(x, y). 

Definition:  

A first-order differential equation y′ = f(x, y) is called a separable variable equation if the 
function f(x, y) can be factored into the product of two functions of x and y (i.e., it can be 
divided into multipliers so that each multiplier depends on only one variable): 

y′ = f1(x) ∙ f2(y) 
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where  𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑦𝑦) are continuous functions. 

Solution method:  

1) Replace  y′  with  dy
dx

 

dy
dx

= f1(x) ∙ f2(y) 

2) Separate the variables, i.e. move all the y terms (including dy) to one side of the equation 
and all the x terms (including dx) to the other side.  

For this purpose, multiply both sides of the equation by dx and divide by f2(y): 

dy
f2(y)

= f1(x)dx 

Here we suppose that f2(y) ≠ 0 . 

3) Integrate directly both sides of the equation with respect to their variables. 

�
dy

f2(y)
= � f1(x)dx 

4) Solve the obtained equation if possible. 

If y(x) cannot be expressed in an explicit form, the expression on the right-hand side of the 
equation is shifted to the left side. In this case, the general integral of the differential equation 
is obtained. 

5) Dividing by  f2(y) we assume that f2(y) ≠ 0 . It may cause loss of the solution f2(y) = 0. If 
there are y values for which f2(y) = 0 and these values satisfy the given differential equation, 
then these values will also be solutions of the differential equation. Therefore, we should proof 
if f2(y) = 0 is a solution of the differential equation, and if it is a solution, then check if it is a 
singular solution. 

 

Let us consider a differential equation given in the form 

P(x, y)dx + Q(x, y)dy = 0 

Definition:  

Differential equation P(x, y)dx + Q(x, y)dy = 0 is called a separable variable equation if each 
function P(x, y) and Q(x, y)dy can be factored into a product of two functions so that each 
multiplier depends on only one variable:  

P1(x) ∙ P2(y)dx + Q1(x) ∙ Q2(y)dy = 0 
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Solution method:  

1) Separate the variables:   

Q1(x) ∙ Q2(y)dy = −P1(x) ∙ P2(y)dx 

Q2(y)dy
P2(y) = −

P1(x)dx
Q1(x)

 

 

2) Integrate both sides of the obtained expression: 

�
Q2(y)dy

P2(y) = −�
P1(x)dx
Q1(x)

 

3) Obtain a solution in an explicit or implicit form.  

4) Check out if 𝑃𝑃2(𝑦𝑦) = 0 and 𝑄𝑄1(𝑦𝑦) = 0 are the singular solutions of the differential equation. 

Example 8.7   

Solve the differential equation          y′ − (x + 2) ∙ e−y = 0. 

This equation can be rewritten as  

y′ = (x + 2) ∙ e−y 

This equation is a separable variable equation because the function on the right-hand side of 
the equation is a product of two functions. One function depends on x only and other one 
depends on y only.   

We solve the equation by the following steps: 

1) Replace  y′  with  dy
dx

:                

dy
dx

= (x + 2) ∙ e−y 

2) Separate variables, by multiplying both sides of the equation by dx and dividing by e−y. 

dy
e−y

= (x + 2)dx 

Since e−y ≠ 0, we do not miss any solutions dividing by e−y . 

3) Now we have an expression that contains only y terms on the left-hand side and only x terms 
on the right-hand side. It means that we can integrate both sides of the expression: 

�
dy
e−y

= �(x + 2)dx 
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Let us find separately both integrals: 

�
dy
e−y

= � eydy = ey + C1 

�(x + 2)dx = �(x + 2)d(x + 2) =
(x + 2)2

2
+ C2 

4) As a result, we have  

ey + C1 =
(x + 2)2

2
+ C2 

ey =
(x + 2)2

2
+ C2 − C1 

Since   C1  and C2  are constants,  C2 − C1 = C  is also a constant. Therefore, after integration 
of both sides of the expression, only one constant C of integration is usually placed on only one 
side of the expression.  

ey =
(x + 2)2

2
+ C 

The solution in the explicit form is 

y = ln�
(x + 2)2

2
+ C� 

The last expression is the general solution of the given differential equation. 

Example 8.8   

Solve the differential equation          (y + xy)dx + (x − xy)dy = 0. 

The given equation can be rewritten in the form  

y ∙ (1 + x)dx + x ∙ (1 − y)dy = 0 

This equation is a separable variable equation because the functions before dx and before dy 
have the form of a product of only one variable functions.  

We solve the equation by the following steps: 

1) Switch the places of the terms 

x ∙ (1 − y)dy = −y ∙ (1 + x)dx 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

11 
 
 

2) Separate variables by dividing both sides of the equation by y and x ( x ≠ 0  and y ≠ 0). 

x ∙ (1 − y)dy
x ∙ y

= −
y ∙ (1 + x)

x ∙ y
dx 

(1 − y)dy
y

= −
(1 + x)

x
dx 

3) Integrate each side of the obtained equation: 

�
(1 − y)dy

y
= −�

(1 + x)
x

dx 

��
1
y
− 1�dy = −��

1
x

+ 1� dx 

ln|y| − y = −ln|x| − x + C 

ln|y| + ln|x| − y + x = C 

As a result, we have obtained the general solution of the equation in the form of a general 
integral: 

ln|y ∙ x| + x − y = C  

where  x ≠ 0  and y ≠ 0, to satisfy the condition on an argument of logarithmic function. 

4) We check for possibly missed solutions because of dividing by x and y: 

Both  x = 0  and y = 0 satisfies the given differential equations, but they cannot be obtained 
from the general solution, so that  x = 0  and y = 0 are singular solutions of the differential 
equation. 

 

In general, solution method for the separable variable equations is:  

1) Separate variables, i.e., rewrite the equation thus that the terms depending on x and terms 
depending on y appear on opposite sides, so that there is only one variable on each side of the 
equation. 

2) Integrate one side of obtained expression with respect to y and the other side with respect to x.  

3)  Simplify.  

4) Check for possibly missed solutions, i.e. check for existence of singular solutions of the differential 
equation. 
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8.2.3 First-order linear differential equations  

Definition:  Linear differential equation 

A first-order differential equation is called a linear differential equation if it can be written in 
the form  

y′ + p(x)y = f(x) 

where  𝑝𝑝(𝑥𝑥) and 𝑓𝑓(𝑥𝑥) are continuous functions. 

Example 8.9   

1) If the function 𝑓𝑓(𝑥𝑥) on the right-hand side of the equation is equal to zero, then the 
differential equation is called a homogeneous linear equation:  

y′ + p(x)y = 0,     (𝑓𝑓(𝑥𝑥) = 0) 

2) If the function 𝑓𝑓(𝑥𝑥) in on right-hand side of the equation is not equal to zero, then the 
differential equation is called a nonhomogeneous linear equation:  

y′ + p(x)y = f(x),     (𝑓𝑓(𝑥𝑥) ≠ 0) 

Solution method:  

There are two methods to solve a linear differential equation. These are the method of Variation of a 
Constant and Bernoulli method. Both methods will be considered here. 

1. Method of Variation of a Constant 
 

The method consists of the following steps 

1)  Find a general solution to the corresponding homogeneous equation 

y′ + p(x)y = 0. 

The general solution of the homogeneous equation contains a constant of integration C.  

2) Replace the constant C with a certain (but still unknown) function C(x).  

3) Determine the unknown function C(x) by substituting this general solution of the homogeneous 
equation into the given nonhomogeneous differential equation.  

Example 8.10   

Solve the differential equation 𝑥𝑥𝑦𝑦′ + 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥  by the Method of Variation of a Constant. 

This equation is a first-order linear differential equation and can be rewritten in the form  
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𝑦𝑦′ +
𝑦𝑦
𝑥𝑥

=
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

1) We solve the corresponding homogeneous linear equation: 

𝑦𝑦′ +
𝑦𝑦
𝑥𝑥

= 0 

This is a separable variable equation. Therefore, we replace  y′  with  dy
dx

 , and move the second 
term from the left-hand side of the equation to the right-hand side: 

dy
dx

= −
𝑦𝑦
𝑥𝑥

 

Then we separate variables, provided that y ≠ 0  

dy
y

= −
𝑑𝑑𝑥𝑥
𝑥𝑥

 

and integrate both sides of the equation: 

�
dy
y

= −�
dx
x

 

ln|y| = −ln|x| + C 

Since C is an arbitrary constant, it may be written in the form  ln|C|: 

ln|y| = −ln|x| + ln|C| 

Then, using properties of a logarithm, we have: 

ln|y| = ln �
C
x
� 

As a result, we obtain the general solution of the homogeneous equation in the form  

y0 =
C
x

 

2) In order to find a general solution of the nonhomogeneous equation, we replace the constant 
C with an unknown function C(x): 

y =
C(x)

x
 

4) The unknown function C(x) is found by substituting y = C(x)
x

  into the given nonhomogeneous 
differential equation together with its derivative y’:  
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y′ = �
C(x)

x
�
′

=
x ∙ C′(x) − x′ ∙ C(x)

x2
=

x ∙ C′(x) − C(x)
x2

=
C′(x)

x
−

C(x)
x2

 

After substituting y and y’ into the given equation we have  

�
C′(x)

x
−

C(x)
x2

� +
𝐶𝐶(𝑥𝑥)
𝑥𝑥2

=
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

This equation can be simplified as 

C′(x) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 

To find the unknown function C(x), we integrate the obtained expression with respect to x: 

C(x) = � C′(x)dx = �𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 = −𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 + 𝐶𝐶 

Substituting the obtained function C(x) into the expression for y, we have the general solution 
of the given nonhomogeneous linear differential equation: 

y =
−cos(x) + C

x
 

 

2. Bernoulli method (Solution by using substitution  𝑦𝑦 = 𝑈𝑈 ∙ 𝑉𝑉) 
 

The main idea is that the solution y of a linear differential equation   y′ + p(x)y = f(x)  is 
sought as a product of two functions  y = U ∙ V , where 𝑈𝑈 = 𝑈𝑈(𝑥𝑥)  un 𝑉𝑉 = 𝑉𝑉(𝑥𝑥) are unknown 
functions.  One of these functions can be chosen arbitrarily, but the other function must be chosen 
the way that the multiplication U(x) ∙ V(x) satisfies the differential equation. 

Steps of solving: 

1) Substitute the function y = U ∙ V and its derivative  y′ = U′ ∙ V + U ∙ V′ into the given 
linear differential equation: 

y′ + p(x)y = f(x) 

The equation takes the form 

U′V + UV′ + p(x)UV = f(x) 

or  

U′V + U ∙ (V′ + p(x)V) = f(x) 
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2) The function V is chosen to make the expression in the brackets equal to zero: 

V′ + p(x)V = 0 

Then the last equation in the 1st step becomes:  

                                        U′V + U ∙ 0 = f(x)       or        U′V = f(x). 

As a result, the following system is to be solved  

�
V′ + p(x)V = 0

U′V = f(x)
 

3) The equation  V′ + p(x)V = 0 is a separable variable differential equation so that it is 
solved for V by separating variables: 

dV
dx

= −p(x)V 

dV
V

= −p(x)dx 

�
dV
V

= −� p(x)dx 

ln|V| = −�p(x)dx 

V = e−∫p(x)dx + C1 

Here it is assumed that the constant  C1 = 0 , because the equation suffices to have only one 
particular solution. 

4) Substitute the obtained V back into the equation U′V = f(x): 

U′ ∙ e−∫p(x)dx = f(x) 

6)   Solve the last equation for U. 

7) Finally, substitute the obtained U and V into y = UV and get a general solution. 

Example 8.11   

Solve the linear differential equation    𝑥𝑥𝑦𝑦′ + 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥  by using substitution y=UV. 

Beforehand, we write the equation in the form  
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𝑦𝑦′ +
𝑦𝑦
𝑥𝑥

=
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

1) We substitute the function y = U ∙ V and its derivative  y′ = U′ ∙ V + U ∙ V′ into the given 
differential equation: 

𝑈𝑈′𝑉𝑉 + 𝑈𝑈𝑉𝑉′ +
𝑈𝑈𝑉𝑉
𝑥𝑥

=
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

or  

𝑈𝑈′𝑉𝑉 + 𝑈𝑈 �𝑉𝑉′ +
𝑉𝑉
𝑥𝑥
� =

𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

2) According to the method, we equate to zero the expression in the brackets: 

𝑉𝑉′ +
𝑉𝑉
𝑥𝑥

= 0 

Then the equation can be written as a system of two equations: 

�
𝑉𝑉′ +

𝑉𝑉
𝑥𝑥

= 0

𝑈𝑈′𝑉𝑉 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

 3) We solve the first equation of the system for V. This is a separable variable equation: 

dV
dx

= −
𝑉𝑉
𝑥𝑥

 

dV
V

= −
𝑑𝑑𝑥𝑥
𝑥𝑥

 

�
dV
V

= −�
dx
x

 

ln|V| = −ln|x| + C1 

where we assume  C1 = 0 so that: 

ln|V| = −ln|x|        ln|V| = ln|x−1| 

V =
1
x

 

4) We substitute the obtained V back into the second equation of the system: 
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U′V =
sinx

x
 

𝑈𝑈′ ∙
1
𝑥𝑥

=
𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥
𝑥𝑥

 

We simplify and solve the obtained equation for U:  

𝑈𝑈′ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 

U = �U′dx  = � sin𝑥𝑥 𝑑𝑑𝑥𝑥 = −cos𝑥𝑥 + 𝐶𝐶 

5) Substituting the obtained U and V into y = UV, we get the general solution for the given linear 
differential equation: 

y = UV = (−cos𝑥𝑥 + 𝐶𝐶) ∙
1
𝑥𝑥

 

y =
C − cos𝑥𝑥

x
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8.2.4 Exercises 
 

Exercise 8.1. 

Solve the initial value problem (Cauchy problem) 

𝑦𝑦′ = 𝑦𝑦 ∙ cot𝑥𝑥 ,              y �
π
2
� = 3. 

Solution: 

This equation is a separable variable equation because the function on the right-hand side of the 
equation is a product of two functions. One function depends on x only and other one depends on y 
only.  

We solve the equation in the following steps: 

1) Replace  y′  with  dy
dx

:                

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑦𝑦 ∙ cot𝑥𝑥     

2) We separate variables, multiplying both sides of the equation by dx and dividing by y: 

𝑑𝑑𝑦𝑦
𝑦𝑦

= cot𝑥𝑥 ∙ 𝑑𝑑𝑥𝑥     

Here we suppose  𝑦𝑦 ≠ 0. 

3) We have the equation that contains only y terms on the left-hand side and only x terms on the 
right-hand side. It means that we can integrate both sides of the equation: 

�
𝑑𝑑𝑦𝑦
𝑦𝑦

= � cot𝑥𝑥𝑑𝑑𝑥𝑥       

Let us find the integral on the right-hand side of the expression: 

� cot𝑥𝑥 𝑑𝑑𝑥𝑥 = �
cos𝑥𝑥
sin𝑥𝑥

𝑑𝑑𝑥𝑥 = �
d(sin𝑥𝑥)

sin𝑥𝑥
= ln|sin𝑥𝑥| + 𝐶𝐶 

4) As a result, we have  

ln|𝑦𝑦| = ln|sin𝑥𝑥| + 𝐶𝐶 

where  C  is a constant.  

In order to simplify the obtained solution, we can write ln|C1| on the right side of the expression 
instead of 𝐶𝐶, where C1 is also a constant (C1 ≠ 0 ). It is allowed due to both C and ln|C1| being 
arbitrary constants. 

ln|𝑦𝑦| = ln|sin𝑥𝑥| + ln|C1| 

According to the properties of logarithmic functions, we have 

ln|𝑦𝑦| = ln|C1 ∙ sin𝑥𝑥| 
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As a result, we obtain the general solution of the given differential equation in the explicit form: 

y = C1 ∙ sin𝑥𝑥 ,           (C1 ≠ 0 ).     

4) Check for possibly missed solutions due to dividing by y: 

The y = 0 satisfies the given differential equations, but it will be not the singular solution if we rewrite 
the obtained general solution of the differential equation in the form  

y = C ∙ sinx ,     

where C is an arbitrary constant (it can be equal by zero). 

In this case the solution y = 0 can be obtained from the general solution at C=0, therefore it is the 
particular solution of the given equation. 

As a result, the general solution of the given differential equation is 

y = C ∙ sinx 

5) To solve the initial value problem, we should find only one particular solution of the differential 

equation that satisfies the initial condition y �π
2
� = 3, i.e. the value of the function y(x) must be equal 

to 3  at x = π
2

. In order to find this particular solution, we insert y = 3  and x= π
2

  into the general 

solution. 

3 = C ∙ sin
π
2

 

3 = C ∙ 1 

C = 3 . 

We insert the obtained value of the constant C onto the general solution and get a particular solution 
of the given initial value problem. 

y = 3 ∙ sin𝑥𝑥 

Exercise 8.2. 

Solve the initial value problem (Cauchy problem) 

2(𝑥𝑥2𝑦𝑦 + 𝑦𝑦)𝑦𝑦′ +�1 + 𝑦𝑦2 = 0 ,              y(0) = 2. 

Solution: 

This equation can be rewritten as  

2𝑦𝑦(𝑥𝑥2 + 1)𝑦𝑦′ = −�1 + 𝑦𝑦2       

This equation is a separable variable equation because the function before y’ on the left-hand side of 
the equation is a product of two functions. One function depends on x only and the other one 
depends on y only. The function on the right-hand side of the equation depends only on y. 

We solve the equation by the following steps: 

1) At first, we replace y′  with  dy
dx

:                
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2𝑦𝑦(𝑥𝑥2 + 1)
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= −�1 + 𝑦𝑦2       

2) We separate the variables, multiplying both sides of the equation by dx and dividing by (x2 + 1) 
and by �1 + 𝑦𝑦2: 

2𝑦𝑦𝑑𝑑𝑦𝑦

�1 + 𝑦𝑦2
= −

𝑑𝑑𝑥𝑥
(𝑥𝑥2 + 1)       

Since �1 + 𝑦𝑦2 ≠ 0  and (𝑥𝑥2 + 1) ≠ 0, we do not miss any solution dividing by (x2 + 1) and by 

�1 + 𝑦𝑦2. 

3) Now we have an expression that contains only y terms on the left-hand side and only x terms on the 
right-hand side. This means that we can integrate both sides of the expression: 

�
2𝑦𝑦𝑑𝑑𝑦𝑦

�1 + 𝑦𝑦2
= −�

𝑑𝑑𝑥𝑥
(𝑥𝑥2 + 1)       

Let us find the integral in the left-hand side of the expression: 

�
2𝑦𝑦𝑑𝑑𝑦𝑦

�1 + 𝑦𝑦2
= �

𝑑𝑑(𝑦𝑦2)

�1 + 𝑦𝑦2
= �(1 + 𝑦𝑦2)−

1
2 𝑑𝑑(1 + 𝑦𝑦2) = 2(1 + 𝑦𝑦2)

1
2 + 𝐶𝐶 

4) As a result, we have  

2�1 + 𝑦𝑦2 = −arctan𝑥𝑥 + 𝐶𝐶 

or 

2�1 + 𝑦𝑦2 + arctan𝑥𝑥 = 𝐶𝐶 

where  C  is an arbitrary constant.  

The last expression is the general solution of the given differential equation. 

5) To solve the initial value problem, we should find only one particular solution of the differential 
equation that satisfies the initial condition y(0) = 2.  In order to find this particular solution, we insert 
y = 2  and x= 0 into the general solution. 

2�1 + 22 + arctan0 = 𝐶𝐶 

2√5 + 0 = 𝐶𝐶      C = 2√5      . 

We insert the obtained value of the constant C onto the general solution and get the particular 
solution of the given initial value problem in implicit form 

2�1 + 𝑦𝑦2 + arctan𝑥𝑥 = 2√5 

 

Exercise 8.3. 

Solve the differential equation          (e2x + 3)dy + y ∙ e2xdx = 0. 

Solution: 
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This equation is a separable variable equation because the function before dy depends only on x and 
the function dx has the form of a product of only one variable functions.  

We solve the equation by the following steps: 

1) Switch the places of the terms 

(e2x + 3)dy = −y ∙ e2xdx 

2) We separate variables by dividing both sides of the equation by y and by e2x + 3 ( y ≠ 0). 

dy
y

= −
e2x

e2x + 3
dx 

3) We integrate each side of the obtained equation: 

�
dy
y

= −�
e2x

e2x + 3
dx 

�
dy
y

= −
1
2
�

d(e2x + 3)
e2x + 3

 

ln|y| = −
1
2

ln|e2x + 3| + ln|C| 

We simplify the obtained solution by using the properties of a logarithmic function: 

ln|y| = ln(e2x + 3)−
1
2 + ln|C| 

ln|y| = ln �C ∙ (e2x + 3)−
1
2� 

y = C ∙ (e2x + 3)−
1
2 

As a result, we obtain the general solution of the given differential equation in the form: 

y =
C

√e2x + 3
 

4) We check for possibly missed solutions due to dividing by y: 

y = 0 satisfies the given differential equations, and it can be obtained from the general solution at 
C=0. Therefore, it is not a singular solution.  

Excercise 8.4. 

Solve the initial value problem (Cauchy problem) 

𝑦𝑦′ + 𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑥𝑥 =
1

𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥
 ,              y(π) = 0. 

Solution: 

This is a first-order linear differential equation, which is to be solved using substitution y=UV. 

1) We substitute the function y = U ∙ V  and its derivative  y′ = U′ ∙ V + U ∙ V′ into the given 
differential equation: 
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U′V + UV′+ UV ∙ 𝑦𝑦𝑦𝑦𝑠𝑠𝑥𝑥 =
1

cos𝑥𝑥
 

U′V + U(V′ + V ∙ 𝑦𝑦𝑦𝑦𝑠𝑠𝑥𝑥) =
1

cos𝑥𝑥
 

2) According to the method, we equate to zero the expression in the brackets: 

𝑉𝑉′ + V ∙ 𝑦𝑦𝑦𝑦𝑠𝑠𝑥𝑥 = 0 

Then the last equation in step 1 can be written as a system of two equations: 

�
𝑉𝑉′ + V ∙ 𝑦𝑦𝑦𝑦𝑠𝑠𝑥𝑥 = 0

U′V =
1

cos𝑥𝑥
 

 3) We solve the first equation of the system by separating variables: 

dV
dx

= −V ∙ tan𝑥𝑥 

dV
V

= −tan𝑥𝑥 𝑑𝑑𝑥𝑥 

�
dV
V

= −� tan𝑥𝑥 𝑑𝑑𝑥𝑥 

The right-hand side is equal to 

−� tan𝑥𝑥 𝑑𝑑𝑥𝑥 = −�
sin𝑥𝑥
cos𝑥𝑥

 𝑑𝑑𝑥𝑥 = �
1

cos𝑥𝑥
 𝑑𝑑(𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥) = ln|cos𝑥𝑥| + 𝐶𝐶1 

Therefore, 

ln|V| = ln|cos𝑥𝑥| + C1 

Assuming  C1 = 0 , we have 

ln|V| = ln|cos 𝑥𝑥|    

V = cos𝑥𝑥 

4) We substitute the obtained V back into the second equation of the system: 

𝑈𝑈′𝑉𝑉 =
1

cos𝑥𝑥
 

𝑈𝑈′𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 =
1

cos𝑥𝑥
 

We simplify and solve the obtained above equation:  

𝑈𝑈′ =
1

cos2𝑥𝑥
 

U = �U′dx  = �
1

cos2𝑥𝑥
dx = tan𝑥𝑥 + C 

5) Substituting the obtained U and V into y = UV, we get the general solution for the given linear 
differential equation: 
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y = UV = (tan𝑥𝑥 + C) ∙ cos𝑥𝑥 = �
sin𝑥𝑥
cos𝑥𝑥

+ C� ∙ cos𝑥𝑥 = sin𝑥𝑥 + C ∙ cos𝑥𝑥 

As a result, the general solution of the differential equation is 

y = sin𝑥𝑥 + C ∙ cos𝑥𝑥 

6) We solve the initial value problem, it means that we should find only one particular solution of the 
differential equation that satisfies the initial condition y(π) = 0, i.e. the value of the function y(x) 
must to be equal to 0  at x = π. In order to find this particular solution, we substitute  y = 0  and x=
π into the general solution. 

0 = sin𝜋𝜋 + C ∙ cos𝜋𝜋 

0 = 0 + C ∙ (−1)      −C = 0          C = 0. 

We substitute the obtained value of the constant C onto the general solution and get the particular 
solution of the given initial value problem 

y = sin𝑥𝑥 

Exercise 8.5. 

Solve the differential equation  y′ − 3x2y = x ∙ ex3. 

Solution:  

This is a first-order linear differential equation. We will solve it by the substitution y=UV. 

1) We substitute the function y = U ∙ V  and its derivative  y′ = U′ ∙ V + U ∙ V′ into the given 
differential equation: 

U′V + UV′ − 3x2 ∙ UV = x ∙ ex3 

U′V + U(V′ − V ∙ 3x2) = x ∙ ex3 

2) According to the method, we equate to zero the expression in the brackets: 

𝑉𝑉′ − V ∙ 3x2 = 0 

The last equation in step 1 can be written as a system of two equations: 

�𝑉𝑉
′ − V ∙ 3x2 = 0
U′V = x ∙ ex3

 

 3) We solve the first equation of the system by separating variables: 

dV
dx

= V ∙ 3x2 

dV
V

= 3x2 𝑑𝑑𝑥𝑥 

�
dV
V

= �3x2 𝑑𝑑𝑥𝑥 

ln|V| = x3 + C1 

On assuming  C1 = 0 , we have: 
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ln|V| = x3                   V = ex3  

4) We substitute the obtained V back into the second equation of the system: 

                                                                 𝑈𝑈′𝑉𝑉 = x ∙ ex3                 𝑈𝑈′ex3 = x ∙ ex3 

We simplify and solve the equation for U:  

𝑈𝑈′ = x 

U = �U′dx  = � x dx =
x2

2
+ C 

5) Substituting the obtained U and V into y = UV, we get the general solution for the given linear 
differential equation: 

y = UV = �
x2

2
+ C� ∙ ex3 

Exercise 8.6. 

Solve the initial value problem 

(1 + 𝑥𝑥2)𝑦𝑦′ = 2𝑥𝑥𝑦𝑦 + (1 + 𝑥𝑥2)2 ,              y(1) = 4. 

 

Solution:  

First, we rewrite the given equation in the form 

(1 + 𝑥𝑥2)𝑦𝑦′ − 2𝑥𝑥𝑦𝑦 = (1 + 𝑥𝑥2)2  

We divide both sides of the equation by (1 + 𝑥𝑥2): 

𝑦𝑦′ −
2𝑥𝑥𝑦𝑦

(1 + 𝑥𝑥2)
= (1 + 𝑥𝑥2) 

Now it is clear, that this differential equation is a first-order linear differential equation, which can be 
solved by substitution y=UV  (Bernoulli method). 

1) We substitute function y = U ∙ V and its derivative  y′ = U′ ∙ V + U ∙ V′ into the differential 
equation: 

𝑈𝑈′𝑉𝑉 + 𝑈𝑈𝑉𝑉′ −
2𝑥𝑥 ∙ 𝑈𝑈𝑉𝑉

(1 + 𝑥𝑥2)
= (1 + 𝑥𝑥2) 

𝑈𝑈′𝑉𝑉 + 𝑈𝑈 �𝑉𝑉′ −
2𝑥𝑥 ∙ 𝑉𝑉

(1 + 𝑥𝑥2)
� = (1 + 𝑥𝑥2) 

2) According to the method, we equate to zero the expression in the brackets: 

𝑉𝑉′ −
2𝑥𝑥 ∙ 𝑉𝑉

(1 + 𝑥𝑥2)
= 0 

The last equation in step 1 can be written as a system of two equations: 
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�
𝑉𝑉′ −

2𝑥𝑥 ∙ 𝑉𝑉
(1 + 𝑥𝑥2)

= 0

U′V = (1 + 𝑥𝑥2)
 

 3) We solve the first equation of the system by separating variables: 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑥𝑥

=
2𝑥𝑥 ∙ 𝑉𝑉

(1 + 𝑥𝑥2)
 

�
dV
V

= �
2𝑥𝑥

(1 + 𝑥𝑥2)
 𝑑𝑑𝑥𝑥 

To evaluate integral on the right-hand side of the equation, we use     2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑(𝑥𝑥2) = 𝑑𝑑(1 + 𝑥𝑥2) , 

�
2𝑥𝑥

(1 + 𝑥𝑥2)
 𝑑𝑑𝑥𝑥 = �

1
(1 + 𝑥𝑥2)

 𝑑𝑑(𝑥𝑥2 + 1) = ln|𝑥𝑥2 + 1| + 𝐶𝐶1 

Therefore, 

ln|V| = ln|𝑥𝑥2 + 1| + C1 

Assuming  C1 = 0 , we have 

ln|V| = ln|𝑥𝑥2 + 1|        V = 𝑥𝑥2 + 1 

4) We substitute the obtained V back into the second equation of the system: 

𝑈𝑈′𝑉𝑉 = 𝑥𝑥2 + 1 

𝑈𝑈′(𝑥𝑥2 + 1) = 𝑥𝑥2 + 1 

Simplify and solve the equation for U:  

𝑈𝑈′ = 1 

U = �U′dx  = �1 dx = 𝑥𝑥 + C 

5) Substituting the obtained U and V into y = UV  we get the general solution for the given linear 
differential equation: 

y = UV = (x + C) ∙ (𝑥𝑥2 + 1) 

As a result, the general solution of the differential equation is 

y = (x + C) ∙ (𝑥𝑥2 + 1) 

In order to find a particular solution, we substitute  y = 4  and x= 1 into the general solution. 

4 = (1 + C) ∙ (12 + 1) 

4 = (1 + 𝐶𝐶) ∙ 2          C + 1 = 2         C = 1 

Substitute the obtained value of the constant C onto the general solution to get the particular solution 
of the given initial value problem: 

y = (x + 1) ∙ (𝑥𝑥2 + 1) = 𝑥𝑥3 + 𝑥𝑥2 + 𝑥𝑥 + 1 
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8.3 SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 
In this section we shortly consider basic concepts for second-order differential equations. The 

second-order linear differential equations with constant coefficients and two solving methods will be 
considered in detail, i.e. the method of variation of constants and the method of undetermined 
coefficients.  

8.3.1 Basic concepts for second-order differential equations. Second-order linear 
differential equations. 

A second-order differential equation can be written in the general (implicit) form 

F(x, y, y′, y′′) = 0 

or in the explicit form 

y′′ = f(x, y, y′) 

where y=y(x) is an unknown function. 

The general solution of a second-order differential equation involves two arbitrary constants C1 and 
C2. It can be written in the explicit form y = φ(x, C1, C2) or the implicit form Ф(x, y, C1, C2) = 0.  

Example 8.12   
Consider the simplest second-order differential equation 

𝑦𝑦′′ = 6𝑥𝑥 

The unknown function y(x) is found by integrating both sides of the equation two times with 
respect to x:  

y′ = �6xdx = 3x2 + C1 

y = �(3x2 + C1)dx = x3 + C1x + C2 

where  𝐶𝐶1,𝐶𝐶2 are arbitrary integration constants. 

The general solution of the given equation is:  

y = x3 + C1x + C2 

 

In order to find only one particular solution of a second-order differential equation, two additional 
conditions are necessary. These additional conditions can be given as  

1) Initial value conditions, when the functions’ y(x) and y’(x) values are prescribed at defined x0 value 
of x: 
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y(x0) = y0        and  y′(x0) = y1          

2) Boundary conditions, when the function’s y(x) values are prescribed at different  x1 and x2 values of 
x. 

y(x1) = y1        and  y(x2) = y2          

Example 8.13   

Let us consider the differential equation from Example 8.12 as an initial value problem 

𝑦𝑦′′ = 6𝑥𝑥  and    y(0) = 1 , y′(0) = 2 

The general solution of the differential equation from Example 8.11 is 

y = x3 + C1x + C2. 

In order to find the corresponding C1 and C2 values, we do the following: 

1) Substitute x = 0  and y = 1 (i.e., the initial condition for y) into the general solution: 

1 = 03 + C10 + C2 

2) Find a y’(x) derivative of the general solution y (x) and substitute x = 0  and y′ = 2 into 
obtained expression: 

y′ = 3x2 + C1 

2 = 3 ∙ 02 + C1 

As a result, we find constants corresponding to the initial conditions: 

C1 = 2    and  C2 = 1      

The solution of the initial value problem is found by substituting obtained C1 and C2 values into 
the general solution, and the particular solution that satisfies the given initial condition is: 

y = x3 + 2x + 1 

In the following chapter we will consider second-order linear differential equations with constant 
coefficients. 

 

 

 

Definition: Second-order linear differential equations  
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A second-order differential equation is called a linear differential equation, if it can be written 
in the form  

a1(x)y′′ + a2(x)y′ + a3(x)y = f(x) 

 where  a1(x) , a2(x)  and a3(x) are continuous functions and  a1(x) ≠ 0. 

Definition: Homogeneous and Nonhomogeneous linear differential equations 

1) If the function 𝑓𝑓(𝑥𝑥) on the left-hand side of a linear equation is not equal to zero (f(x) ≠ 0), 
then the differential equation is called a nonhomogeneous linear equation: 

a1(x)y′′ + a2(x)y′ + a3(x)y = f(x) 

2) If the function 𝑓𝑓(𝑥𝑥) on the left-hand side of a linear equation is equal to zero (f(x) = 0) , 
then the differential equation is called a homogeneous linear equation: 

a1(x)y′′ + a2(x)y′ + a3(x)y = 0 

Definition: Second-order linear differential equations with constant coefficients  

A second-order linear differential equation is called a linear differential equation with constant 
coefficients if coefficients before y’’, y’ and y are constants 

a1y′′ + a2y′ + a3y = 0 

where  a1 , a2  and a3 are constants and  a1 ≠ 0. 
 

8.3.2 Second-order linear Homogeneous differential equations with constant 
coefficients 

Consider a second-order linear homogeneous differential equation with constant coefficients: 

a1y′′ + a2y′ + a3y = 0 

where a1 , a2  and a3 are some constant coefficients and  a1 ≠ 0. 

Solution method: 

For each of the linear homogeneous differential equation with constant coefficients can be 
written the, so-called, characteristic (also called auxiliary) equation: 

a1k2 + a2k + a3 = 0 

The general solution of the homogeneous differential equation depends on the roots of the 
characteristic quadratic equation. There exist three cases, as follows: 
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1. The discriminant of the characteristic quadratic equation D > 0. 
 

In this case, the roots of the characteristic equations are real and distinct  k1 ≠ k2  , and 
the general solution of the homogeneous differential equation in this case has the form:  

y = C1ek1x + C2ek2x 

where  C1  and C2 are arbitrary real numbers. 

2. The discriminant of the characteristic equation D = 0.  
 

In this case, the roots are real and equal  k1 = k2 = k (repeated), and the general solution of 
the differential equation has the form:  

y = C1ekx + C2xekx      or     y = (C1 + C2x)ekx        

3. The discriminant of the characteristic equation D < 0.  

In this case, the roots are complex and conjugate,  k1 = α + iβ    and   k2 = α − iβ  (i = √−1) 
and the general solution is written as  

y = C1eαxcos𝛽𝛽𝑥𝑥 + C2eαxsin𝛽𝛽𝑥𝑥        

Example 8.14   
Let us consider the following linear differential equation with constant coefficients:  

𝑦𝑦′′ + 3𝑦𝑦′ − 10𝑦𝑦 = 0   

The corresponding characteristic (auxiliary) equation is 

𝑘𝑘2 + 3𝑘𝑘 − 10 = 0 

The discriminant of this equation 𝐷𝐷 = 49 > 0; therefore, the roots are real and distinct: 

k1 = 2    and    k2 = −5 

Then the general solution of the differential equation is 

y = C1e2x + C2e−5x. 

Example 8.15   
Consider the equation:  

𝑦𝑦′′ − 4𝑦𝑦′ + 4𝑦𝑦 = 0   

Its characteristic (auxiliary) equation is 

𝑘𝑘2 − 4𝑘𝑘 + 4 = 0 

The discriminant of the quadratic equation 𝐷𝐷 = 0, and the roots are real and repeated: 

k1 = k2 = 2 

The general solution of the differential equation is 
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y = C1e2x + C2xe2x        

Example 8.16   
Consider the equation:  

𝑦𝑦′′ + 2𝑦𝑦′ + 10𝑦𝑦 = 0   

Its characteristic (auxiliary) equation is: 

𝑘𝑘2 + 2𝑘𝑘 + 10 = 0 

The discriminant of the quadratic equation 𝐷𝐷 = −36 < 0, and the roots complex and 
conjugate:  

k1 = −1 + 3i    and    k2 = −1 − 3i 

The general solution of the differential equation is 

y = C1e−1∙xcos3x + C2e−1∙xsin3x            
 

8.3.3 Second-order linear Nonhomogeneous differential equations with 
constant coefficients 

A nonhomogeneous linear differential equation with constant coefficient has the form 

a1y′′ + a2y′ + a3y = f(x) 

where a1 , a2  and a3 are arbitrary constants and  a1 ≠ 0. 

For each nonhomogeneous linear differential equation its related homogeneous differential equation 
can be written as 

a1y′′ + a2y′ + a3y = 0 

1.1.1.1 Theorem. 

A general solution of a nonhomogeneous equation is the sum of the general solution  yc(x) of the 
related homogeneous equation and a particular solution 𝑌𝑌(x) of the nonhomogeneous equation: 

y = yc(x) + 𝑌𝑌(x) 

There exist two general approaches to find a particular solution 𝑌𝑌(x) of a nonhomogeneous 
differential equation. These are the Method of Undetermined Coefficients, and the Method of 
Variation of Constants. 
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1.1.1.2 Method of Variation of Constants 

The Lagrangian constant variation method can be used for any type of function f(x) on the right-hand 
side of the nonhomogeneous linear differential equation. 

Steps of solving: 

1) First, solve an associated homogeneous equation 

a1y′′ + a2y′ + a3y = 0 

and find the general solution yc(x) of this equation. The general solution of the homogeneous 
equation contains two constants   C1 and C2 and can be written in the form  

yc = C1 ∙ y1 + C2 ∙ y2 

where  C1 , C2 are constants and functions y1, y2  depend on the roots of the characteristic equation. 

2) Replace the constants  C1 and C2 with arbitrary (still unknown) functions C1(x) and C2(x) and find 
the general solution of the given nonhomogenous equation in the form  

y = C1(x) ∙ y1 + C2(x) ∙ y2 

3) Taking into account that  y = C1(x)y1 + C2(x)y2  satisfies the given nonhomogeneous equation 
with the right-hand side f(x), it can be shown that the unknown functions C1(x) and C2(x)  can be 
determined from the system of two equations: 

�

C′1(x) ∙ y1 + C′2(x) ∙ y2 = 0

C′1(x) ∙ y′1 + C′2(x) ∙ y′2 =
f(x)
𝑦𝑦1

 

4) Find  C1′(x) and C2′(x) from the system. 

5) By integration find    C1(x) = ∫C1′(x)dx       and   C2(x) = ∫C2′(x)dx 

6) Substitute the obtained functions C1(x) and C2(x)  into the form of the general solution.  

 
Example 8.17   
Solve the equation:  

𝑦𝑦′′ + 9𝑦𝑦 =
1

cos3𝑥𝑥
 

We solve an associated homogeneous equation 

𝑦𝑦′′ + 9𝑦𝑦 = 0 

Its characteristic (auxiliary) equation is 
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𝑘𝑘2 + 9 = 0      =>       𝑘𝑘2 = −9 

The roots are complex and conjugate:  

k1 = √−9 = 3i = 0 + 3i    and   k2 = −√−9 = −3i = 0 − 3i   

The general solution of the associated homogeneous differential equation is 

yc = C1e0∙xcos3x + C2e0∙xsin3x            

or 

yc = C1cos3x + C2sin3x            

where C1  and   C2   are arbitrary constants. 

2) We replace the constants  C1 and C2 with the arbitrary (still unknown) functions C1(x) and 
C2(x) and find the general solution of the given nonhomogeneous differential equation in the 
form:  

y = C1(x)cos3x + C2(x)sin3x           

3) To determine the unknown functions C1(x) and C2(x) , we write a system of equations for 
derivatives of the unknown functions  

�
C′1(x) ∙ cos3𝑥𝑥 + C′2(x) ∙ sin3𝑥𝑥 = 0

C′1(x) ∙ (cos3𝑥𝑥)′ + C′2(x) ∙ (sin3𝑥𝑥)′ =
1

cos3𝑥𝑥
 

The system can be written in the form 

�
C′1(x) ∙ cos3𝑥𝑥 + C′2(x) ∙ sin3𝑥𝑥 = 0

C′1(x) ∙ (−3sin3𝑥𝑥) + C′2(x) ∙ 3cos3𝑥𝑥 =
1

cos3𝑥𝑥
 

4) We will solve the system by using Cramer’s rule, so that we need to find a determinant of 
the coefficient matrix:  

 D= �
cos3𝑥𝑥         sin3𝑥𝑥

−3sin3𝑥𝑥     3cos3𝑥𝑥
� = 3cos23𝑥𝑥 + 3sin23𝑥𝑥 = 3 

and the determinants  

 𝐷𝐷1 = �
0               sin3𝑥𝑥

1
cos3𝑥𝑥

       3cos3𝑥𝑥� = 0 −
sin3𝑥𝑥
cos3𝑥𝑥

= −tan3𝑥𝑥 
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D2 = �
cos3𝑥𝑥           0

−3sin3𝑥𝑥     
1

cos3𝑥𝑥
� =

cos3𝑥𝑥
cos3𝑥𝑥

− 0 = 1 

Then  

𝐶𝐶′1(𝑥𝑥) =
𝐷𝐷1
𝐷𝐷

= −
tan3𝑥𝑥

3
              and                𝐶𝐶′2(𝑥𝑥) =

𝐷𝐷2
𝐷𝐷

=
1
3

     

5) We find unknown functions C1(x) and C2(x) by integrating:  

                      𝐶𝐶1(𝑥𝑥) = ∫𝐶𝐶′1(𝑥𝑥)𝑑𝑑𝑥𝑥   and     𝐶𝐶2(𝑥𝑥) = ∫𝐶𝐶′2(𝑥𝑥)𝑑𝑑𝑥𝑥  .  

 

𝐶𝐶1(𝑥𝑥) = ��−
tan3𝑥𝑥

3
� dx = −  

1
3
�

sin3𝑥𝑥
cos3x

  dx =  
1
9
�

d(cos3𝑥𝑥)
cos3x

  =  
1
9

 ln|cos3𝑥𝑥| + �̃�𝐶1 

𝐶𝐶2(𝑥𝑥) = �𝐶𝐶′2(𝑥𝑥)𝑑𝑑𝑥𝑥 = �
1
3

  dx =  
1
3
� 1   dx =  

1
3

x + �̃�𝐶2        

Thus, 

𝐶𝐶1(𝑥𝑥) =  
1
9

 ln|cos3𝑥𝑥|   +  C�1    and         𝐶𝐶2(𝑥𝑥) =  
1
3

x + C�2         

where C�1  and   C�2   are constants. 

6) Substitute the obtained functions C1(x) and C2(x)  into the form of general solution of the 
nonhomogeneous differential equation: 

y = � 
1
9

 ln|cos3𝑥𝑥|   + �̃�𝐶1� cos3x + �
1
3

x + �̃�𝐶2� sin3x           

As the result, the general solution of given nonhomogeneous differential equation is 

y = C�1cos3x + C�2sin3x +  
1
9

 ln|cos3𝑥𝑥| ∙ cos3𝑥𝑥 +   
1
3

x ∙ sin3x               

or  

y = C1cos3x + C2sin3x +  
1
9

 ln|cos3𝑥𝑥| ∙ cos3𝑥𝑥 +   
1
3

x ∙ sin3x               

where  C1   and    C2  are also arbitrary constants. 

Note that the sum of the two first terms in the obtained solution is the general solution for 
associated homogenous differential equation, and the sum of the last two terms is the 
particular solution of the nonhomogeneous differential equation. 
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8.3.4 Method of Undetermined Coefficients 

Consider second-order nonhomogeneous differential equations with right-hand 
functions that has derivatives that vary little (in type of function) from their parent functions. 
These functions are: polynomial 𝑃𝑃𝑛𝑛(𝑥𝑥) functions, exponential functions 𝑒𝑒𝛼𝛼𝛼𝛼, trigonometric 
functions (sine and cosine (sin𝛽𝛽𝑥𝑥 , cos𝛽𝛽𝑥𝑥)), as well as the sum, difference and multiplication of 
these functions. In this case we can predict the form of solution of this differential equation 
taking into account the form of its right-hand function. 

The main idea of the Method of Undetermined Coefficients is to construct the form of 
a particular solution Y(x) of the given nonhomogenous equation corresponding to the form 
(based on the form) of a function f(x) on the right side of the equation. Y(x) is written down as 
a function with undefined coefficients, then is substituted into the equation and the 
coefficients are found.  

As was mentioned before, this method works only for a restricted class of functions on 
the right-hand side of the equation, such as 

𝑓𝑓(𝑥𝑥) = 𝑃𝑃𝑛𝑛(𝑥𝑥)𝑒𝑒𝛼𝛼𝛼𝛼 

𝑓𝑓(𝑥𝑥) = (𝑃𝑃𝑛𝑛(𝑥𝑥) cos(𝛽𝛽𝑥𝑥) + 𝑄𝑄𝑚𝑚(𝑥𝑥) sin(𝛽𝛽𝑥𝑥)) ∙ 𝑒𝑒𝛼𝛼𝛼𝛼  

where     𝑃𝑃𝑛𝑛(𝑥𝑥)  and     𝑄𝑄𝑚𝑚(𝑥𝑥) are polynomials of degrees n and m, respectively.  

In both cases a choice for the particular solution should match the structure of the right-
hand side function of the nonhomogeneous equation. It depends on the right side of the 
equation as well as on the roots of the characteristic equation. 

Let us consider in detail how to construct the form of a particular solution Y(x) of a given 
nonhomogenous equation.  

Consider three cases for a function on the right-hand side of the equation:  

1)     𝑓𝑓(𝑥𝑥) = 𝑃𝑃𝑛𝑛(𝑥𝑥)𝑒𝑒𝛼𝛼𝛼𝛼                (𝛽𝛽 = 0) 

The particular solution has the same form as f(x), only instead of polynomial 𝑃𝑃𝑛𝑛(𝑥𝑥) we write 
polynomial with undefined coefficients. Furthermore, if the coefficient α in the argument of 
the exponential function coincides with a root of the auxiliary (characteristic) equation, the 
particular solution will contain the additional factor 𝑥𝑥𝑠𝑠, where 𝑠𝑠  is the order of the root α in 
the characteristic equation. 

 This means that the particular solution Y is written down in the form 
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𝑌𝑌 = 𝑃𝑃𝑛𝑛�(𝑥𝑥)𝑒𝑒𝛼𝛼𝛼𝛼 ∙ 𝑥𝑥𝑠𝑠 

where 

a)  𝑃𝑃𝑛𝑛�(𝑥𝑥) is a polynomial of order n with unknown coefficients, i.e. 

if n=0, then      𝑃𝑃0�(𝑥𝑥) = 𝐴𝐴 ; 

if n=1, then       𝑃𝑃1�(𝑥𝑥) = 𝐴𝐴𝑥𝑥 + 𝐵𝐵; 

if n=2, then       𝑃𝑃2�(𝑥𝑥) = 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶; 

and so on. 

b) To find the power 𝑠𝑠 of factor  𝑥𝑥𝑠𝑠 ,we compare the coefficient α in the  power of the exponential 
function with the roots 𝑘𝑘1and 𝑘𝑘2  of the auxiliary equation: 

   if  𝛼𝛼 ≠ 𝑘𝑘1  and  𝛼𝛼 ≠ 𝑘𝑘2    then  𝑠𝑠 = 0; 

   if  𝛼𝛼 = 𝑘𝑘1  and  𝛼𝛼 ≠ 𝑘𝑘2     OR   𝛼𝛼 ≠ 𝑘𝑘1  and  𝛼𝛼 = 𝑘𝑘2  then  𝑠𝑠 = 1; 

   if  𝛼𝛼 = 𝑘𝑘1 = 𝑘𝑘2    then  𝑠𝑠 = 2; 

 

2)  𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼(𝑁𝑁 cos(𝛽𝛽𝑥𝑥) + 𝑀𝑀 sin(𝛽𝛽𝑥𝑥)),     where N, M are constants 

    𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼𝑁𝑁 cos(𝛽𝛽𝑥𝑥)                          𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼(𝑁𝑁 cos(𝛽𝛽𝑥𝑥) + 𝟎𝟎 ∙ sin(𝛽𝛽𝑥𝑥))             (M=0) 

   𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼𝑀𝑀 sin(𝛽𝛽𝑥𝑥)                            𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼(𝟎𝟎 ∙ cos(𝛽𝛽𝑥𝑥) + 𝑀𝑀 ∙ sin(𝛽𝛽𝑥𝑥))         (N=0) 

The particular solution has the same form as f(x) only instead of constants N and M we write 
unknown coefficients. Furthermore, if the number 𝛼𝛼 + 𝛽𝛽𝑠𝑠 coincides with a root of the auxiliary 
(characteristic) equation, the particular solution will contain the additional multiplier 𝑥𝑥𝑠𝑠, where 
𝑠𝑠  is the order of the root 𝛼𝛼 + 𝛽𝛽𝑠𝑠 in the characteristic equation. 

 This means that the particular solution Y is written down in the form 

𝑌𝑌 = 𝑒𝑒𝛼𝛼𝛼𝛼(𝐴𝐴 cos(𝛽𝛽𝑥𝑥) + 𝐵𝐵 sin(𝛽𝛽𝑥𝑥)) ∙ 𝑥𝑥𝑠𝑠 

where   A and B are unknown coefficients.  

To find the power 𝑠𝑠 of multiplier  𝑥𝑥𝑠𝑠 , we compare the number 𝛼𝛼 + 𝛽𝛽𝑠𝑠 with the roots 𝑘𝑘1and 𝑘𝑘2  of the 
auxiliary equation: 

   if  𝛼𝛼 + 𝑠𝑠𝛽𝛽 ≠ 𝑘𝑘1  and  𝛼𝛼 + 𝑠𝑠𝛽𝛽 ≠ 𝑘𝑘2    then  𝑠𝑠 = 0; 

   if  𝛼𝛼 + 𝑠𝑠𝛽𝛽 = 𝑘𝑘1  or  𝛼𝛼 + 𝑠𝑠𝛽𝛽 = 𝑘𝑘2        then  𝑠𝑠 = 1. 

3)  𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼(𝑃𝑃𝑛𝑛(𝑥𝑥) cos(𝛽𝛽𝑥𝑥) + 𝑄𝑄𝑚𝑚(𝑥𝑥) sin(𝛽𝛽𝑥𝑥))      
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    𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼𝑃𝑃𝑛𝑛(𝑥𝑥) cos(𝛽𝛽𝑥𝑥)                          𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼(𝑃𝑃𝑛𝑛(𝑥𝑥) cos(𝛽𝛽𝑥𝑥) + 𝟎𝟎 ∙ sin(𝛽𝛽𝑥𝑥)) 

   𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼𝑄𝑄𝑛𝑛(𝑥𝑥) sin(𝛽𝛽𝑥𝑥)                            𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝛼𝛼𝛼𝛼(𝟎𝟎 ∙ cos(𝛽𝛽𝑥𝑥) + 𝑄𝑄𝑛𝑛(𝑥𝑥) ∙ sin(𝛽𝛽𝑥𝑥)) 

where   𝑃𝑃𝑛𝑛(𝑥𝑥) and 𝑄𝑄𝑚𝑚(𝑥𝑥) are polynomials of order n and m respectively. 

In these cases the particular solution is found in the form 

𝑌𝑌 = 𝑒𝑒𝛼𝛼𝛼𝛼�𝑃𝑃𝑘𝑘�(𝑥𝑥) cos(𝛽𝛽𝑥𝑥) + 𝑄𝑄𝑘𝑘�(𝑥𝑥) sin(𝛽𝛽𝑥𝑥)� ∙ 𝑥𝑥𝑠𝑠 

where   𝑃𝑃𝑘𝑘�(𝑥𝑥) and 𝑄𝑄𝑘𝑘�(𝑥𝑥) are polynomials of order k with unknown coefficients and  𝑘𝑘 = max (𝑠𝑠,𝑚𝑚). 

To find the power 𝑠𝑠 of multiplier  𝑥𝑥𝑠𝑠 , we compare the number 𝛼𝛼 + 𝛽𝛽𝑠𝑠 with the roots 𝑘𝑘1and 𝑘𝑘2  of the 
auxiliary equation: 

   if  𝛼𝛼 + 𝑠𝑠𝛽𝛽 ≠ 𝑘𝑘1  and  𝛼𝛼 + 𝑠𝑠𝛽𝛽 ≠ 𝑘𝑘2    then  𝑠𝑠 = 0; 

   if  𝛼𝛼 + 𝑠𝑠𝛽𝛽 = 𝑘𝑘1  or  𝛼𝛼 + 𝑠𝑠𝛽𝛽 = 𝑘𝑘2        then  𝑠𝑠 = 1. 

The unknown coefficients are determined by substitution of the expected type of the particular 
solution into the original nonhomogeneous differential equation. 

Scheme of solving: 

1) Solve the corresponding homogeneous differential equation    a1y′′ + a2y′ + a3y = 0; 

2) By the form of function f(x) on the right-hand side of the equation, write down the form of a 
particular solution Y with undefined coefficients; 

3) Find Y’ and Y’’;  

4) Determine the undefined coefficients A, B, C by substitution of the particular solution Y and 
its derivatives into the given original nonhomogeneous differential equation. 

5) Substitute obtained coefficients into the form of the particular solution Y. 

6) Write down the general solution of the given nonhomogeneous differential equation as 

y = yc(x) + 𝑌𝑌(x) 

where yc(x) is the general solution of the related homogeneous equation, and 𝑌𝑌(x) is a 
particular solution of the given nonhomogeneous equation. 

Example 8.18   
Let us solve the equation:  

https://context.reverso.net/%D0%BF%D0%B5%D1%80%D0%B5%D0%B2%D0%BE%D0%B4/%D0%B0%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9-%D1%80%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9/respectively
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𝑦𝑦′′ − 2𝑦𝑦′ = 𝑥𝑥2 + 5𝑥𝑥 − 1 

1)  First, we solve the associated homogeneous equation: 

𝑦𝑦′′ − 2𝑦𝑦′ = 0 

The auxiliary equation for this equation is: 

𝑘𝑘2 − 2𝑘𝑘 = 0   =>    𝑘𝑘 ∙ (𝑘𝑘 − 2) = 0  

The roots of the auxiliary equation are real and distinct:  

k1 = 𝟎𝟎    and   k2 = 2   

Therefore, the general solution of the associated homogeneous differential equation is 

yc = C1e0∙x + C2e2∙x           

or 

yc = C1 + C2𝑒𝑒2𝛼𝛼            

where C1  and   C2   are constants. 

2) We write down the form for the particular solution Y, taking into account form of function   
𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 + 5𝑥𝑥 − 1   on the right-hand side of the equation. 

The function 𝑓𝑓(𝑥𝑥) can be written in the form:  f(x) = (x2 + 5x − 1) ∙ e𝟎𝟎∙x. 

In this case the particular solution Y has the form:  𝑌𝑌 = 𝑃𝑃𝑛𝑛� (𝑥𝑥)𝑒𝑒𝛂𝛂𝛼𝛼 ∙ 𝑥𝑥𝑠𝑠. 

a) The function 𝑓𝑓(𝑥𝑥) has a polynomial with degree 2 before the exponential function (n=2), 
therefore the polynomial 𝑃𝑃𝑛𝑛� (𝑥𝑥) must also be a polynomial with degree 2, but with undefined 
coefficients: 𝑃𝑃2�(𝑥𝑥) = 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶  

b) The coefficient in the argument of the exponential function is α=0. It coincides with one root 
of the auxiliary (characteristic) equation:   𝛼𝛼 = 𝑘𝑘1 = 0 , therefore  𝑠𝑠 = 1 and the particular 
solution will contain the additional factor 𝑥𝑥1 .  

Thus, the particular solution of the differential equation Y has the form:  

𝑌𝑌 = (𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶) ∙ 𝑒𝑒𝟎𝟎∙𝛼𝛼 ∙ 𝑥𝑥1 = (𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥 + 𝐶𝐶) ∙ x 

or 
𝑌𝑌 = 𝐴𝐴𝑥𝑥3 + 𝐵𝐵𝑥𝑥2 + 𝐶𝐶𝑥𝑥 

3) We find first- and second-order derivatives for Y: 
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𝑌𝑌′ = (𝐴𝐴𝑥𝑥3 + 𝐵𝐵𝑥𝑥2 + 𝐶𝐶𝑥𝑥)′ = 3𝐴𝐴𝑥𝑥2 + 2𝐵𝐵𝑥𝑥 + 𝐶𝐶 

𝑌𝑌′′ = (3𝐴𝐴𝑥𝑥2 + 2𝐵𝐵𝑥𝑥 + 𝐶𝐶)′ = 6𝐴𝐴𝑥𝑥 + 2𝐵𝐵 

4) We substitute them into the given nonhomogeneous differential equation:  

𝑦𝑦′′ − 2𝑦𝑦′ = 𝑥𝑥2 + 5𝑥𝑥 − 1. 

As a result, we have: 

6𝐴𝐴𝑥𝑥 + 2𝐵𝐵 − 2(3𝐴𝐴𝑥𝑥2 + 2𝐵𝐵𝑥𝑥 + 𝐶𝐶) = 𝑥𝑥2 + 5𝑥𝑥 − 1 

We simplify the left-hand expression: 

−6𝐴𝐴𝑥𝑥2 +  6𝐴𝐴𝑥𝑥 − 4𝐵𝐵𝑥𝑥 + 2𝐵𝐵 − 2𝐶𝐶 = 𝑥𝑥2 + 5𝑥𝑥 − 1 

We group coefficients with the same powers of x on the left-hand side of the equation: 

−6𝐴𝐴𝑥𝑥2 +  (6𝐴𝐴 − 4𝐵𝐵)𝑥𝑥 + 2𝐵𝐵 − 2𝐶𝐶 = 1 ∙ 𝑥𝑥2 + 5𝑥𝑥 + (−1) 

The right and left sides of the equation are equal for every  𝑥𝑥 ∈ 𝑅𝑅. It would be possible only if 
the coefficients at the same powers of x on the right and left sides of the equation are equal: 

The coefficients at   𝑥𝑥2 : − 6𝐴𝐴 = 1 ; 

The coefficients at   𝑥𝑥:    6𝐴𝐴 − 4𝐵𝐵 = 5 ; 

The coefficients at  𝑥𝑥0:    2𝐵𝐵 − 2𝐶𝐶 = −1. 

 Solve the obtained system of equations:     �
−6𝐴𝐴 = 1

6𝐴𝐴 − 4𝐵𝐵 = 5
2𝐵𝐵 − 2𝐶𝐶 = −1

 

From the first equation of the system we have:    𝐴𝐴 = −1
6
. 

From the second equation:  6𝐴𝐴 − 4𝐵𝐵 = 5    6 ∙ �− 1
6
� − 4𝐵𝐵 = 5      −4𝐵𝐵 = 6    

𝐵𝐵 = −
3
2

 

From the third equation: 2𝐵𝐵 − 2𝐶𝐶 = −1         2 ∙ �− 3
2
� − 2𝐶𝐶 = −1     −2𝐶𝐶 = 2 

𝐶𝐶 = −1 

Substitute the obtained coefficients into the form of the particular solution Y: 
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𝑌𝑌 = −
1
6
𝑥𝑥3 −

3
2
𝑥𝑥2 − 𝑥𝑥 

As a result, the general solution of the given nonhomogeneous equation is : 

y = yc + Y = C1 + C2𝑒𝑒2𝛼𝛼  −
1
6
𝑥𝑥3 +

3
2
𝑥𝑥2 + 2𝑥𝑥           

Example 8.19   

Solve the equation:  

𝑦𝑦′′ + 𝑦𝑦′ − 2𝑦𝑦 = 𝑥𝑥𝑒𝑒2𝛼𝛼 

1)  The associated homogeneous equation is 

𝑦𝑦′′ + 𝑦𝑦′ − 2𝑦𝑦 = 0 

Its auxiliary equation is 

𝑘𝑘2 + 𝑘𝑘 − 2 = 0     

The roots for this equation are real and distinct:  

k1 = 1    and   k2 = −2   

Therefore, the general solution of the associated homogeneous differential equation is 

yc = C1e1∙x + C2e−2∙x             

where C1  and   C2   are constants. 

2) We construct the form of a particular solution Y by taking into account the form of the 
function on the right-hand side of the equation (𝑥𝑥) = 𝑥𝑥𝑒𝑒𝟐𝟐𝛼𝛼 . 

For such function (𝑥𝑥) , the particular solution Y has the form:  𝑌𝑌 = 𝑃𝑃𝑛𝑛� (𝑥𝑥)𝑒𝑒𝜶𝜶𝛼𝛼 ∙ 𝑥𝑥𝑠𝑠. 

a) The function 𝑓𝑓(𝑥𝑥) has a polynomial with degree 1 before the exponential function (n=1), 
therefore the polynomial with undefined coefficients   𝑃𝑃𝑛𝑛�(𝑥𝑥) must also be a polynomial with 
degree 1:    𝑃𝑃1� (𝑥𝑥) = 𝐴𝐴𝑥𝑥 + 𝐵𝐵 . 

b) The coefficient in the power of the exponential function is α = 2. It does not coincide with 
any root of the auxiliary (characteristic) equation:      𝛼𝛼 ≠ 𝑘𝑘1  and 𝛼𝛼 ≠ 𝑘𝑘2,  therefore,  𝑠𝑠 = 0 
and the particular solution does not contain an additional factor.  

Thus, a particular solution Y of the differential equation Y has the form  
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𝑌𝑌 = (𝐴𝐴𝑥𝑥 + 𝐵𝐵) ∙ 𝑒𝑒𝟐𝟐∙𝛼𝛼 ∙ 𝑥𝑥0 = (𝐴𝐴𝑥𝑥 + 𝐵𝐵) ∙ 𝑒𝑒2∙𝛼𝛼 

3) We find first- and second-order derivatives for Y: 

𝑌𝑌′ = �(𝐴𝐴𝑥𝑥 + 𝐵𝐵)𝑒𝑒2∙𝛼𝛼�
′

= (𝐴𝐴𝑥𝑥 + 𝐵𝐵)′ ∙ 𝑒𝑒2𝛼𝛼 + (𝐴𝐴𝑥𝑥 + 𝐵𝐵) ∙ (𝑒𝑒2∙𝛼𝛼)′ = 𝐴𝐴𝑒𝑒2𝛼𝛼 + (𝐴𝐴𝑥𝑥 + 𝐵𝐵) ∙ 2𝑒𝑒2∙𝛼𝛼 

It can be also written as  𝑌𝑌′ = (2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴)𝑒𝑒2𝛼𝛼. 

𝑌𝑌" = �(2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴)𝑒𝑒2𝛼𝛼�
′

= (2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴)′ ∙ 𝑒𝑒2𝛼𝛼 + (2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴) ∙ (𝑒𝑒2𝛼𝛼)′ = 

= 2A𝑒𝑒2𝛼𝛼 +  (2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴) ∙ 2𝑒𝑒2𝛼𝛼 =  (4𝐴𝐴𝑥𝑥 + 4𝐵𝐵 + 4𝐴𝐴) ∙ 𝑒𝑒2𝛼𝛼 

So,  𝑌𝑌" = (4𝐴𝐴𝑥𝑥 + 4𝐵𝐵 + 4𝐴𝐴) ∙ 𝑒𝑒2𝛼𝛼. 

4) Substitute the obtained Y”, Y’ and Y into the given nonhomogeneous differential equation:  

𝑦𝑦′′ + 𝑦𝑦′ − 2𝑦𝑦 = 𝑥𝑥𝑒𝑒2𝛼𝛼. 

As a result, we have: 

(4𝐴𝐴𝑥𝑥 + 4𝐵𝐵 + 4𝐴𝐴) ∙ 𝑒𝑒2𝛼𝛼 + (2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴)𝑒𝑒2𝛼𝛼 − 2(𝐴𝐴𝑥𝑥 + 𝐵𝐵) ∙ 𝑒𝑒2∙𝛼𝛼 = 𝑥𝑥𝑒𝑒2𝛼𝛼 

We simplify the expression: 

(4𝐴𝐴𝑥𝑥 + 4𝐵𝐵 + 4𝐴𝐴 + 2𝐴𝐴𝑥𝑥 + 2𝐵𝐵 + 𝐴𝐴 − 2𝐴𝐴𝑥𝑥 − 2𝐵𝐵) ∙ 𝑒𝑒2𝛼𝛼 = 𝑥𝑥𝑒𝑒2𝛼𝛼 

4𝐴𝐴𝑥𝑥 + 4𝐵𝐵 + 5𝐴𝐴 = 𝑥𝑥 

or                                                           4𝐴𝐴𝑥𝑥 + 4𝐵𝐵 + 5𝐴𝐴 = 1𝑥𝑥 + 0. 

The right and left sides of the equation are equal for every  ∀𝑥𝑥 ∈ 𝑅𝑅. That would only be possible 
if the coefficients at the same powers of x on the right-hand side and left-hand side of the 
equation are equal. 

The coefficients at   𝑥𝑥:    4𝐴𝐴 = 1 ; 

The coefficients at  𝑥𝑥0:    4𝐵𝐵 + 5𝐴𝐴 = 0. 

That leads us to solving the system:     � 4𝐴𝐴 = 1
4𝐵𝐵 + 5𝐴𝐴 = 0. 

It follows from the first equation of the system:    𝐴𝐴 = 1
4
. 

It follows from the second equation:  4𝐵𝐵 + 5 ∙ 1
4

= 0    4𝐵𝐵 = −5
4
      𝐵𝐵 = − 5

16
  .  

We substitute the obtained coefficients into the form of the particular solution Y: 
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𝑌𝑌 = (𝐴𝐴𝑥𝑥 + 𝐵𝐵) ∙ 𝑒𝑒2𝛼𝛼 = �
1
4
𝑥𝑥 −

5
16
� ∙ 𝑒𝑒2𝛼𝛼 

As a result, the general solution of the given nonhomogeneous equation is  

y = yc + Y = C1ex + C2e−2x +  �
1
4
𝑥𝑥 −

5
16
� ∙ 𝑒𝑒2𝛼𝛼           

Example 8.20   

Solve the equation  

𝑦𝑦′′ + 𝑦𝑦 = 3cos𝑥𝑥 + 2sin𝑥𝑥. 

1) The associated homogeneous equation is 

𝑦𝑦′′ + 𝑦𝑦 = 0 

Its auxiliary equation is 

                                            𝑘𝑘2 + 1 = 0       𝑘𝑘2 = −1       𝑘𝑘2 = ±√−1   = ±𝑠𝑠  

The roots of the auxiliary equation are complex and conjugated:  

k1 = 𝑠𝑠 = 0 + 1 ∙ 𝑠𝑠    and   k2 = −i = 0 − 1 ∙ 𝑠𝑠  

Therefore, the general solution of the associated homogeneous differential equation is 

yc = C1e0∙xcos(1 ∙ x) + C2e0∙xsin(1 ∙ x)             

yc = C1cos𝑥𝑥 + C2sin𝑥𝑥  

2) The function on the right-hand side of the equation is  𝑓𝑓(𝑥𝑥) = 3𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 + 2𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 . 

The function 𝑓𝑓(𝑥𝑥) can be written as 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝟎𝟎𝛼𝛼�3𝑐𝑐𝑐𝑐𝑠𝑠(𝟏𝟏 ∙ 𝑥𝑥) + 2𝑠𝑠𝑠𝑠𝑠𝑠(𝟏𝟏 ∙ 𝑥𝑥)�. 

For such function 𝑓𝑓(𝑥𝑥), the particular solution Y has the form: 

𝑌𝑌 = 𝑒𝑒𝛼𝛼𝛼𝛼�Acos(𝛽𝛽𝑥𝑥) + Bsin(𝛽𝛽𝑥𝑥)� ∙ 𝑥𝑥𝑠𝑠. 

The power of the exponential function in function 𝑓𝑓(𝑥𝑥) is α =0 and the coefficient before x in 
the argument of cosine and sine is 𝜷𝜷 = 𝟏𝟏.  

The number 𝜶𝜶 + 𝒊𝒊𝜷𝜷 = 𝟎𝟎 + 𝟏𝟏 ∙ 𝒊𝒊 = 𝒊𝒊  coincides with one root of the auxiliary (characteristic) 
equation:     𝛼𝛼 + 𝑠𝑠𝛽𝛽 = 𝑘𝑘1 , therefore,  𝑠𝑠 = 1 and the particular solution contains the factor 𝑥𝑥1.  

Thus, the particular solution Y of the differential equation Y has the form:  
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𝑌𝑌 = 𝑒𝑒0∙𝛼𝛼(Acos𝑥𝑥 + Bsin𝑥𝑥) ∙ 𝑥𝑥1 = (Acos𝑥𝑥 + Bsin𝑥𝑥) ∙ x 

3) We find first and second-order derivatives for Y: 

𝑌𝑌′ = �(Acos𝑥𝑥 + Bsin𝑥𝑥) ∙ x�
′

= (Acos𝑥𝑥 + Bsin𝑥𝑥)′ ∙ x + (Acos𝑥𝑥 + Bsin𝑥𝑥) ∙ (x)′=  

      = (−𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥) ∙ x + (Acos𝑥𝑥 + Bsin𝑥𝑥) 

𝑌𝑌" = �(−𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥) ∙ x + (Acos𝑥𝑥 + Bsin𝑥𝑥)�
′

= 

= (−𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥)′ ∙ x + (−𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥) ∙ x′ + (Acos𝑥𝑥 + Bsin𝑥𝑥)′ = 

= (−𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 − 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ x + (−𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥) − 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 = 

= (−𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 − 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ x − 2𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 2𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 

4) We substitute Y” and Y into the given nonhomogeneous differential equation:  

As a result, we have: 

(−𝐴𝐴𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 − 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥) ∙ x − 2𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 2𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 + (Acos𝑥𝑥 + Bsin𝑥𝑥) ∙ x = 3cos𝑥𝑥 + 2sin𝑥𝑥 

We simplify the obtained expression: 

−2𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 + 2𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 = 3cos𝑥𝑥 + 2sin𝑥𝑥 

The right and left sides of the equation are equal for every 𝑥𝑥 ∈ 𝑅𝑅.  It would be possible only if 
the coefficients at 𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 and 𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥 on the right-hand side and left-hand side of the equation 
are equal: 

The coefficients at   𝑐𝑐𝑐𝑐𝑠𝑠𝑥𝑥:    2𝐵𝐵 = 3                       𝐵𝐵 = 3
2
 

The coefficients at  𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥:   − 2𝐴𝐴 = 2                   𝐴𝐴 = −1 

We substitute the obtained coefficients into the form of a particular solution Y: 

𝑌𝑌 = �−1 ∙ cos𝑥𝑥 +
3
2
∙ sin𝑥𝑥� ∙ x 

As a result, the general solution of the given nonhomogeneous equation is: 

y = yc + Y = C1cos𝑥𝑥 + C2sin𝑥𝑥 + �−cos𝑥𝑥 +
3
2

sin𝑥𝑥� ∙ x           
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Superposition Principle 

If the right side of a nonhomogeneous equation is the sum of several functions such as 

f(x) = Pn(x)eαx   and     f(x) = (Pn(x) cos(βx) + Qm(x) sin(βx)) ∙ eαx, 

then a particular solution of the differential equation is also the sum of particular solutions 
constructed separately for each such function on the right-hand side expression. 

Example 8.21   

Find a general solution of the differential equation:  

𝑦𝑦′′ − 2𝑦𝑦′ + 𝑦𝑦 = 𝑒𝑒𝛼𝛼 + 5cos3𝑥𝑥. 

1) The associated homogeneous equation: 

𝑦𝑦′′ − 2𝑦𝑦′ + 𝑦𝑦 = 0 

The auxiliary equation for this equation is      𝑘𝑘2 − 2𝑘𝑘 + 1 = 0     

The roots of this equation are real and repeated:           k1 =  k2 = 1  

Therefore, the general solution of the associated homogeneous differential equation is 

yc = C1ex + C2xex             

2) We see that the right-hand side of the given equation is the sum of two functions  𝑓𝑓1(𝑥𝑥) =
𝑒𝑒𝛼𝛼 and  𝑓𝑓2(𝑥𝑥) = 5cos3𝑥𝑥. According to the superposition principle, a particular solution is a sum 
of particular solutions so that it can be expressed  

𝑌𝑌 = 𝑌𝑌1 + 𝑌𝑌2 

where   𝑌𝑌1  is a particular solution for the differential equation 𝑦𝑦′′ − 2𝑦𝑦′ + 𝑦𝑦 = 𝑒𝑒𝛼𝛼  

   and     𝑌𝑌2  is a particular solution for the equation 𝑦𝑦′′ − 2𝑦𝑦′ + 𝑦𝑦 = 5cos3𝑥𝑥. 

a) First, we determine the function 𝑌𝑌1. In this case 𝒇𝒇𝟏𝟏(𝒙𝒙) = 𝒆𝒆𝒙𝒙 and we will be looking for a 
solution in the form 

𝑌𝑌1 = A𝑒𝑒𝛼𝛼𝛼𝛼 ∙ 𝑥𝑥𝑠𝑠 

The power of the exponential function is α =1 and it coincides with two roots of the auxiliary 
(characteristic) equation:    𝛼𝛼 = 𝑘𝑘1 = 𝑘𝑘2 ,   therefore,  𝑠𝑠 = 2  and the particular solution 
𝑌𝑌1  contains the factor 𝑥𝑥2 . 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

44 
 
 

Thus, the particular solution 𝑌𝑌1   of the first differential equation has the form  

𝑌𝑌1  = A𝑒𝑒𝛼𝛼 ∙ 𝑥𝑥2 = 𝐴𝐴𝑥𝑥2𝑒𝑒𝛼𝛼  

3) We find first- and second-order derivatives for 𝑌𝑌1: 

𝑌𝑌1′ = (A𝑥𝑥2𝑒𝑒𝛼𝛼)′ = (A𝑥𝑥2)′ ∙ 𝑒𝑒𝛼𝛼 + (A𝑥𝑥2) ∙ (𝑒𝑒𝛼𝛼)′ = 2𝐴𝐴𝑥𝑥 ∙ 𝑒𝑒𝛼𝛼 + (A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼 = (2𝐴𝐴𝑥𝑥 + A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼 

𝑌𝑌1" = �(2𝐴𝐴𝑥𝑥 + A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼�
′

= (2𝐴𝐴𝑥𝑥 + A𝑥𝑥2)′ ∙ 𝑒𝑒𝛼𝛼+(2𝐴𝐴𝑥𝑥 + A𝑥𝑥2) ∙ (𝑒𝑒𝛼𝛼)′= 

= (2𝐴𝐴 + 2Ax) ∙ 𝑒𝑒𝛼𝛼 + (2𝐴𝐴𝑥𝑥 + A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼 = (2𝐴𝐴 + 4Ax + A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼 

 Substitute Y1′ , Y1′′  and Y1 into the corresponding nonhomogeneous differential equation:  

𝑦𝑦′′ − 2𝑦𝑦′ + 𝑦𝑦 = 𝑒𝑒𝛼𝛼, 

we have 

(2𝐴𝐴 + 4Ax + A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼 − 2(2𝐴𝐴𝑥𝑥 + A𝑥𝑥2) ∙ 𝑒𝑒𝛼𝛼 + 𝐴𝐴𝑥𝑥2𝑒𝑒𝛼𝛼 = 𝑒𝑒𝛼𝛼 

We simplify the obtained expression: 

(2𝐴𝐴 + 4Ax + A𝑥𝑥2 − 4𝐴𝐴𝑥𝑥 − 2A𝑥𝑥2 + 𝐴𝐴𝑥𝑥2)𝑒𝑒𝛼𝛼 = 𝑒𝑒𝛼𝛼 

and get:                     2𝐴𝐴 = 1       𝐴𝐴 = 1/2. 

Then  

𝑌𝑌1  =
1
2
𝑥𝑥2𝑒𝑒𝛼𝛼 

b) We determine the function 𝑌𝑌2.  

Due to the form of the function  𝒇𝒇𝟐𝟐(𝒙𝒙) = 𝟓𝟓𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝒙𝒙 = 𝒆𝒆𝟎𝟎𝒙𝒙(𝟓𝟓 ∙ 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝒙𝒙 + 𝟎𝟎 ∙ 𝐜𝐜𝐬𝐬𝐬𝐬𝐜𝐜𝒙𝒙) , we seek for 
a solution in the form 

𝑌𝑌2 = 𝑒𝑒𝑜𝑜𝛼𝛼(𝐶𝐶 ∙ cos3𝑥𝑥 + 𝐷𝐷 ∙ sin3𝑥𝑥) ∙ 𝑥𝑥𝑠𝑠 

The power of the exponential function is α =0 and the coefficient before x in the argument of 
cosine and sine is 𝜷𝜷 = 𝐜𝐜. The number 𝜶𝜶 + 𝒊𝒊𝜷𝜷 = 𝟎𝟎 + 𝐜𝐜𝒊𝒊 = 𝐜𝐜𝒊𝒊  does not coincide with any root 
of the auxiliary equation, therefore,  𝑠𝑠 = 0.  

𝑌𝑌2 = 𝐶𝐶 ∙ cos3𝑥𝑥 + 𝐷𝐷 ∙ sin3𝑥𝑥 

We find first- and second-order derivatives for Y2: 

𝑌𝑌2′ = (Ccos3𝑥𝑥 + Dsin3𝑥𝑥)′ = −3Csin3𝑥𝑥 + 3Dcos3𝑥𝑥  
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𝑌𝑌2" = (−3Csin3𝑥𝑥 + 3Dcos3𝑥𝑥)′ = −9Ccos3𝑥𝑥 − 9Dsin3𝑥𝑥. 

After substituting Y2′ , Y2′′  and Y2 into the corresponding nonhomogeneous differential 
equation:  

𝑦𝑦′′ − 2𝑦𝑦′ + 𝑦𝑦 = 5cos3𝑥𝑥, 

We have: 

−9Ccos3𝑥𝑥 − 9Dsin3𝑥𝑥 − 2(−3Csin3𝑥𝑥 + 3Dcos3𝑥𝑥) + 𝐶𝐶cos3𝑥𝑥 + 𝐷𝐷sin3𝑥𝑥 = 5cos3𝑥𝑥 

(−8C − 6D)cos3𝑥𝑥 + (−8𝐷𝐷 + 6C)sin3𝑥𝑥 = 5cos3𝑥𝑥 

The coefficients at   𝑐𝑐𝑐𝑐𝑠𝑠3𝑥𝑥:    − 8C − 6D = 5                       

The coefficients at  𝑠𝑠𝑠𝑠𝑠𝑠3𝑥𝑥:      − 8𝐷𝐷 + 6C = 0                   𝐶𝐶 = 4𝐷𝐷
3

 

It follows from the first equation: −8 ∙ �4𝐷𝐷
3
� − 6D = 5   ⇒   −50𝐷𝐷

3
= 5   ⇒𝐷𝐷 = − 3

10
    

and                                                     𝐶𝐶 = 4𝐷𝐷
3

= − 4∙3
3∙10

= −2
5
 

As a result, 

𝑌𝑌2 = −
2
5
∙ cos3𝑥𝑥 −

3
10

∙ sin3𝑥𝑥 

As a result, the general solution of the given nonhomogeneous equation is: 

y = yc + Y = yc + Y1 + Y2 

Then the general solution of the given differential equation is: 

y = C1ex + C2xex +
1
2
𝑥𝑥2𝑒𝑒𝛼𝛼 −

2
5

cos3𝑥𝑥 −
3

10
∙ sin3𝑥𝑥 
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8.3.5 Exercises 
 

Exercise 8.7. 

Find a general and particular solution of the differential equation: 

𝑦𝑦′′ − 4𝑦𝑦′ + 13y = 0 ,     y(0) = 6,    y′(0) = 1  

Solution: 

The auxiliary equation for the given differential equation is 

k2 − 4k + 13 = 0  

The discriminant of the quadratic equation is  𝐷𝐷 = −36 < 0, therefore, the roots are complex and 
conjugated:  

k1 =
4 + √−36

2
= 2 + 3 ∙ i    and   k2 =

4 − √−36
2

= 2 − 3 ∙ i  

It means that the general solution of the given differential equation is 

y = C1e2∙xcos(3x) + C2e2∙xsin(3x)             

In order to find the particular solution that satisfies the given initial conditions, 

1) We substitute x = 0  and y = 6 (i.e., the initial condition) into the general solution: 

6 = C1e2∙0cos(0) + C2e2∙0sin(0)             

6 = C1 ∙ 1 + C2 ∙ 0             

C1 = 6             

2) We find a y’(x) derivative of the general solution y (x). 

y′ = �e2∙x ∙ (C1cos3x + C2sin3x)�′ = (e2∙x)′(C1cos3x + C2sin3x) +   e2∙x(C1cos3x + C2sin3x)′ = 

= 2e2∙x(C1cos3x + C2sin3x) +  e2∙x(−3C1sin3x + 3C2cos3x)   = 

= e2∙x(2C1cos3x + 2C2sin3x −3C1sin3x + 3C2cos3x)   

Thus, the derivative of the general solution is 

y′ = e2∙x(2C1cos3x + 2C2sin3x −3C1sin3x + 3C2cos3x)   

We substitute x = 0  and y′ = 1 from the initial conditions into the obtained expression: 

1 = e2∙0(2C1cos0 + 2C2sin0 −3C1sin0 + 3C2cos0) = 2C1 + 0 −  0 + 3C2   

1 = 2C1 + 3C2   

We substitute  C1 = 6 into the obtained expression, then 

1 = 12 + 3C2   

C2 = −
11
3
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We substitute the obtained constants into the general solution. As a result, the particular solution of 
the given differential equation is 

y = 6e2xcos(3x) −
11
3

e2xsin(3x)   

 

Exercise 8.8. 

Solve the equation:  

𝑦𝑦′′ + 2𝑦𝑦′ + 𝑦𝑦 = 3e−x√x + 1 

Solution: 

We use the Method of Variation of Constants 

1) We solve the associated homogeneous equation: 

𝑦𝑦′′ + 2𝑦𝑦′ + 𝑦𝑦 = 0 

Its characteristic (auxiliary) equation is 

k2 + 2k + 1 = 0 

(k + 1)2 = 0 

The roots of this equation are real and repeated 

k1 = k2 = −1   

The general solution of the associated homogeneous differential equation is 

y0 = C1e−x + C2xe−x           

where C1  and   C2   are constants. 

2) We replace the constants  C1 and C2 with arbitrary functions C1(x) and C2(x) and find the general 
solution of the given nonhomogeneous differential equation in the form  

y = C1e−x + C2xe−x           

3) To determine the unknown functions C1(x) and C2(x) , we write a system of equations for 
derivatives of the unknown functions  

�
C′1(x) ∙ e−x + C′2(x) ∙ xe−x = 0

C′1(x) ∙ (e−x)′+ C′2(x) ∙ (xe−x)′ = 3e−x√x + 1
 

After finding derivatives, we have 

�
C′1(x) ∙ e−x + C′2(x) ∙ xe−x = 0

C′1(x) ∙ (−e−x) + C′2(x) ∙ �1 ∙ e−x + x(−e−x)� = 3e−x√x + 1
 

The system can be written in the form 
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�
(C′1(x) + C′2(x) ∙ x)e−x = 0

�−C′1(x) + C′2(x) ∙ (1 − x)� ∙ e−x = 3e−x√x + 1
 

Let us simplify the system to the form 

�
C′1(x) + C′2(x) ∙ x = 0

−C′1(x) + C′2(x) ∙ (1 − x) = 3√x + 1
 

It follows from the first equation of the system:  

C′1(x) = −C′2(x) ∙ x 

Substituting the obtained C′1(x) into the second equation of the system, it yields: 

C′2(x) ∙ x + C′2(x) ∙ (1 − x) = 3√x + 1 

As a result, we obtain C′2(x): 

C′2(x) = 3√x + 1 

Taking into account the expression for C′1(x), we have 

C′1(x) = −C′2(x) ∙ x = −3x√x + 1 

4) We find the unknown functions C1(x) and C2(x) using integration  

C1(x) = �C′1(x) dx = �−3x√x + 1 dx 

To find this integral, we use the substitution   𝑥𝑥 + 1 = 𝑦𝑦2 .   

 Then 𝑥𝑥 = 𝑦𝑦2 − 1  and  𝑑𝑑𝑥𝑥 = (𝑦𝑦2 − 1)′𝑑𝑑𝑦𝑦 = 2𝑦𝑦𝑑𝑑𝑦𝑦 

�−3x√x + 1 dx = −3�(𝑦𝑦2 − 1)t ∙ 2tdt = −6�(𝑦𝑦4 − 𝑦𝑦2)dt = −6�
𝑦𝑦5

5
−
𝑦𝑦3

3 �
+ 𝐶𝐶1

= −
6
5 �√

𝑥𝑥 + 1�
5

+ 2�√𝑥𝑥 + 1�
3

+ 𝐶𝐶1 

As a result,  

C1(x) = −
6
5

(𝑥𝑥 + 1)
5
2 + 2(𝑥𝑥 + 1)

3
2 + 𝐶𝐶1 

 

C2(x) = �C′2(x) dx = �3√x + 1   dx =  3�(x + 1)
1
2   d(x + 1) = 2(x + 1)

3
2  + C2   

As a result, 

C1(x) = −
6
5

(𝑥𝑥 + 1)
5
2 + 2(𝑥𝑥 + 1)

3
2 + 𝐶𝐶1     and      C2(x) =  2(x + 1)

3
2  + C2         

where C1  and   C2   are constants. 

6) We insert the obtained functions C1(x) and C2(x)  into the form of the general solution: 
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y = �−
6
5

(𝑥𝑥 + 1)
5
2 + 2(𝑥𝑥 + 1)

3
2 + 𝐶𝐶1� e−x   + �2(x + 1)

3
2  + C2� xe−x               

Let us simplify the obtained expression: 

y = e−x �𝐶𝐶1 + xC2 −
6
5

(𝑥𝑥 + 1)
5
2 + 2(𝑥𝑥 + 1)

3
2 + 2x(x + 1)

3
2�  =   

= e−x �𝐶𝐶1 + xC2 −
6
5

(𝑥𝑥 + 1)
5
2 + 2(𝑥𝑥 + 1)

3
2(1 + 𝑥𝑥)� = e−x �𝐶𝐶1 + xC2 −

6
5

(𝑥𝑥 + 1)
5
2 + 2(𝑥𝑥 + 1)

5
2�  

As a result, the general solution of the given nonhomogenous differential equation is: 

y = e−x �𝐶𝐶1 + xC2 +
4
5

(𝑥𝑥 + 1)
5
2�          

Exercise 8.9. 

Solve the equation  

𝑦𝑦′′ − 2𝑦𝑦′ =
4e2x

1 + e2x
 

Solution: 

For this equation we use the Method of Variation of Constants, since the function on the right-hand 
side does not have a special form. 

1) The associated homogeneous equation is 

𝑦𝑦′′ − 2𝑦𝑦′ = 0 

The characteristic (auxiliary) equation is 

𝑘𝑘2 − 2k = 0 

k(k − 2) = 0 

The roots of the characteristic (auxiliary) equation are real and distinct:  

k1 = 0    and   k2 = 2   

The general solution of the associated homogeneous differential equation is 

yc = C1e0∙x + C2e2∙x         

or 

yc = C1 ∙ 1 + C2 ∙ e2x         

where C1  and   C2   are constants. 

2) We replace the constants  C1 and C2 with the arbitrary (but still unknown) functions C1(x) and 
C2(x) and find the general solution of the given nonhomogeneous differential equation in the form:  

y = C1(x) ∙ 1 + C2(x) ∙ e2x          

3) To determine the unknown functions C1(x) and C2(x) , we write a system of equations for 
derivatives of the unknown functions  
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�
C′1(x) ∙ 1 + C′2(x) ∙ e2x = 0

C′1(x) ∙ (1)′ + C′2(x) ∙ (e2x)′ =
4e2x

1 + e2x
 

The system can be written in the form 

�
C′1(x) ∙ 1 + C′2(x) ∙ e2x = 0

C′1(x) ∙ 0 + C′2(x) ∙ 2 ∙ e2x =
4e2x

1 + e2x
 

or 

�
C′1(x) ∙ 1 + C′2(x) ∙ e2x = 0

C′2(x) ∙ 2 ∙ e2x =
4e2x

1 + e2x
 

4) From the second equation of the system we have: 

C′2(x) =
2

1 + e2x
 

From the first equation of the system, it follows that 

C′1(x) = −C′2(x) ∙ e2x = −
2 ∙ e2x

1 + e2x
 

5) We find the unknown functions C1(x) and C2(x) using integration  

                      𝐶𝐶1(𝑥𝑥) = ∫𝐶𝐶′1(𝑥𝑥)𝑑𝑑𝑥𝑥   and     𝐶𝐶2(𝑥𝑥) = ∫𝐶𝐶′2(𝑥𝑥)𝑑𝑑𝑥𝑥  .  

𝐶𝐶1(𝑥𝑥) = �𝐶𝐶′1(𝑥𝑥) dx = −�
2 ∙ e2x

1 + e2x
𝑑𝑑𝑥𝑥 = −�

d(e2x)
1 + e2x

= −�
d(1 + e2x)

1 + e2x
= −ln|1 + e2x| + C1  

𝐶𝐶2(𝑥𝑥) = �𝐶𝐶′2(𝑥𝑥)𝑑𝑑𝑥𝑥 = �
2

1 + e2x
dx = 2�

1 + e2x − e2x

1 + e2x
dx = 2�

1 + e2x

1 + e2x
dx − 2�

e2x

1 + e2x
dx = 

= 2�1 dx −�
2e2x

1 + e2x
dx = 2𝑥𝑥 − ln|1 + e2x| + C2 

As a result, 

𝐶𝐶1(𝑥𝑥) = −ln|1 + e2x| + C1      and         𝐶𝐶2(𝑥𝑥) =  2𝑥𝑥 − ln|1 + e2x| + C2     

where C1  and   C2   are constants. 

6) Insert the obtained functions C1(x) and C2(x)  into the form of the general solution: 

y = (−ln|1 + e2x| + C1) ∙ 1 + (2𝑥𝑥 − ln|1 + e2x| + C2  )e 2x          

As the result, the general solution of the given nonhomogeneous differential equation is: 

y = C1 + C2e 2x − ln|1 + e2x| + (2𝑥𝑥 − ln|1 + e2x|)e 2x          

It can be also written in the form 

y = C1 + C2e 2x + 2𝑥𝑥e 2x − ln|1 + e2x| ∙ (1 + e 2x)          

Exercise 8.10. 
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Find the general solution of the differential equation:  

y′′ − 9y = x + 2e−3x 

Solution:  

1)  The associated homogeneous equation is 

y′′ − 9y = 0 

The auxiliary equation for this equation is      k2 − 9 = 0     

The roots are real and distinct:                        k1 =  3 ,  k2 = −3 

Therefore, the general solution of the associated homogeneous differential equation is 

yc = C1e3x + C2e−3x      

2) The right-hand side of the given equation is the sum of two functions: 

    f1(x) = x        and         f2(x) = 2e−3x.  

According to the superposition principle, a particular solution is expressed by the formula  

Y = Y1 + Y2 

where   Y1  is a particular solution for the differential equation y′′ − 9y = x 

   and     Y2  is a particular solution for the equation y′′ − 9y = 2e−3x. 

a) First, we determine the function 𝑌𝑌1. The function f1(x) can be written as 

f1(x) = x = (x − 0) ∙ e𝐜𝐜x 

In this case we will be looking for a solution in the form 

Y1 = (Ax + B)eαx ∙ xs 

The coefficient in the argument of the exponential function is α =0.  It does not coincide with roots of 
the auxiliary (characteristic) equation:   k1 = 3,   k2 = −3,   therefore  s = 0  and the particular 
solution Y1  does not contain any additional factor.  

Thus, the particular solution Y1  of the differential equation has the form  

Y1 = (Ax + B)e0x ∙ x0 = Ax + B 

3) We find first- and second-order derivatives for Y1  : 

Y1′ = (Ax + B)′ = A 

Y1" = (A)′ = 0 

 We substitute Y1′ , Y1′′  and Y1  into the corresponding nonhomogeneous differential equation  

y′′ − 9y = x, 

As a result, we have: 

0 − 9(Ax + B) = x 
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We simplify the obtained expression: 

−9Ax − 9B = 1 ∙ x 

The coefficients at  x are   −9A = 1                      A = −1/9 

The coefficients at  x0 are   −9B = 0                      B = 0 

 
Then  

Y1  = −
1
9

x 

b) We determine the function Y2.  

Due to function f2(x) = 2e−𝐜𝐜x  , we will construct the form of the particular solution as 

Y2 = Ce−3x ∙ xs 

The coefficient in the argument of the exponential function is α =-3. It coincides with one root k2 =
 −3 of the auxiliary equation, therefore  s = 1 and the particular solution contains the factor x1. 

Thus, the particular solution Y2   of the differential equation has the form:  

Y2 = Ce−3x ∙ x 

Find first- and second-order derivatives for Y: 

Y2′ = (Ce−3x ∙ x)′ = −3Ce−3xx + Ce−3x = e−3x(−3Cx + C) 

Y2" = (e−3x ∙ (−3Cx + C))′ = −3e−3x ∙ (−3Cx + C) + e−3x ∙ (−3C) = e−3x ∙ (9Cx − 6C) 

After substituting Y2′ , Y2′′  and Y2  into the corresponding nonhomogeneous differential equation 
y′′ − 9y = 2e−3x, 

we obtain 

e−3x ∙ (9Cx − 6C)− 9Ce−3x ∙ x = 2e−3x 

e−3x ∙ (9Cx − 6C − 9Cx) = 2e−3x 

−6C = 2 

C = −1/3 

As a result, 

Y2 = −
1
3

e−3x ∙ x 

The general solution of the given nonhomogeneous equation is equal to 

y = yc + Y = yc + Y1 + Y2 

Therefore, the general solution of the given differential equation is: 

y = C1e3x + C2e−3x   −
1
9

x −
1
3

xe−3x 
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8.4 APPLICATION OF THE LAPLACE TRANSFORM FOR SOLVING DIFFERENTIAL 
EQUATIONS 

In this chapter, we consider the solution of second-order linear nonhomogeneous differential 
equations by using the Laplace transform. Definition and properties of the Laplace transform 
also are considered in brief. 
 

8.4.1 The Laplace transform. Definition and main properties. 
 

The Laplace transform is one of the most popular solving methods of linear differential 
equations. It is widely used for solving both ordinary and partial differential equations. For 
linear ordinary differential equations, the Laplace transform is especially preferred in cases 
where the right-hand side function f(x) of the equation is not a continuous function of x. This 
kind of functions often occurs in applications in the electrical circuit theory, automatic control 
theory, signal theory and etc.  

Definition: the Laplace Transform 

Suppose that the real argument function f(t) satisfies the following three conditions: 

1) 𝑓𝑓(𝑦𝑦) is defined at 𝑦𝑦 ≥ 0 , 

2) 𝑓𝑓(𝑦𝑦) is a continuous or piecewise continuous function (it has a finite number of the first-type 
break points) in the interval 𝑦𝑦 ∈ [0, +∞), 

 

y

t

f(t)

y

t

f(t)

 

Figure 8.2 

3) there exist such positive numbers 𝑀𝑀 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑦𝑦 and 𝑆𝑆0 = 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑦𝑦, that for all 𝑦𝑦 ≥ 0 holds  

|𝑓𝑓(𝑦𝑦)| < 𝑀𝑀𝑒𝑒𝑆𝑆0𝑡𝑡. 

In this case, the Laplace transform F(s) of a function f(t) is defined as the improper integral  

F(s) = � f(t)e−stdt
+∞

0
 , 

where s is a parameter (a complex number 𝑠𝑠 = 𝜎𝜎 + 𝜔𝜔𝑠𝑠 in the general case). 
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The improper integral on the right-hand side is called a Laplace integral. 

The function f(t) is called an original and the function F(s) is called a transform. 

If the function F(s) is the transform of the function f(t), we use the notation 

𝐹𝐹(𝑠𝑠) = 𝐿𝐿[𝑓𝑓(𝑦𝑦)]          or                𝑓𝑓(𝑦𝑦) ÷ 𝐹𝐹(𝑠𝑠) 

Theorem: 

If the function satisfies the previously-mentioned conditions, then the Laplace integral exists provided 
that 

𝜎𝜎 = 𝑅𝑅𝑒𝑒(𝑠𝑠) > 𝑆𝑆𝑜𝑜 

where  𝜎𝜎 = 𝑅𝑅𝑒𝑒(𝑠𝑠) is a real part of the complex number 𝑠𝑠 = 𝜎𝜎 + 𝜔𝜔𝑠𝑠 . 

In the general case, the parameter s is a complex number, but here we assume that s is real. 

In applications on solving physical problems by the Laplace transform method it is usually assumed that 
the function f(t) is equal to zero for t < 0: 

𝑓𝑓(𝑦𝑦) = �𝑓𝑓(𝑦𝑦),      𝑦𝑦 ≥ 0
0,            𝑦𝑦 < 0  

This assumption means that processes starting at the moment t = 0 are considered. This kind functions 
can also be defined by using the Heaviside function H(t): 

𝐻𝐻(𝑦𝑦) = � 1,      𝑦𝑦 ≥ 0
    0,        𝑦𝑦 < 0  

as a product of two functions f(t) and H(t):             𝑓𝑓(𝑦𝑦) ∙ 𝐻𝐻(𝑦𝑦) 

For example,  

sin(𝑦𝑦) ∙ 𝐻𝐻(𝑦𝑦) = � sin𝑦𝑦,      𝑦𝑦 ≥ 0
0,            𝑦𝑦 < 0. 

Let us consider an example on finding the Laplace transform of the function f(t)=1    (𝑦𝑦 ≥ 0) , using the 
definition of the Laplace transform. 

Example 8.22   

Laplace transform of the function f(t)=1  0( ≥t ) is found as 

𝐿𝐿[1] = F(s) = � 𝟏𝟏 ∙ e−stdt = lim
b→+∞

� e−stdt = lim
b→+∞

−
1
s
� e−std(−s ∙ t)
b

0

b

0
=

+∞

0
 

= lim
b→+∞

−
1
s

e−st�
0

b

= −
1
s

lim
b→+∞

�e−sb − e0� = −
1
s

(0 − 1) =
1
s
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Thus, 

𝐿𝐿[1] =
1
s

 

or we can also write  

1 ÷
1
s

 

Example 8.23   

Let us find Laplace transform for the function  𝑓𝑓(𝑦𝑦) = 𝑒𝑒𝑡𝑡  0( ≥t ) : 

𝐿𝐿[𝑒𝑒𝑡𝑡] = F(s) = � 𝒆𝒆𝒕𝒕 ∙ e−stdt = lim
b→+∞

� e−(s−1)tdt =
b

0

+∞

0
 

lim
b→+∞

−
1

s − 1
� e−(s−1)td(−(s− 1)t)
b

0
= lim

b→+∞
−

1
s − 1

e−(s−1)t�
0

b

= 

= −
1

s − 1
 lim
b→+∞

�e−(s−1)b − e0� = −
1

s − 1
(0 − 1) =

1
s − 1

 

Thus, 

𝐿𝐿[𝑒𝑒𝑡𝑡] =
1

s − 1
 

In a similar way, the transforms for other elementary functions have been determined and 
summarized in special tables. Part of such a table is presented below. 

f(t) F(s) 

1 
1
s

 

t 
1
s2 

𝑦𝑦𝑛𝑛 
n!

sn+1 

𝑒𝑒𝑎𝑎𝑡𝑡 
1

s − a
    

sin(at) 
a

s2 + a2 

cos(at) 
s

s2 + a2 

eλtsin(𝑦𝑦𝑦𝑦) 
a

(s − λ)2 + a2 
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eλtcos(𝑦𝑦𝑦𝑦) 
s − λ

(s − λ)2 + a2 

sinh(at) 
a

s2 − a2 

cosh(at) 
s

s2 − a2 

eλtsinh(𝑦𝑦𝑦𝑦) 
a

(s − λ)2 − a2 

eλtcosh(𝑦𝑦𝑦𝑦) 
s − λ

(s − λ)2 − a2 

In applications, exactly those summarized tables of elementary Laplace transforms and 
properties of Laplace transform are used in order to find Laplace transforms of necessary 
functions.  

Properties of the Laplace transform 

Let us consider only properties which are necessary for solving differential equations. 

1) Linearity theorem (C1, C2=const): 

𝐿𝐿[𝐶𝐶1𝑓𝑓1(𝑦𝑦) ± 𝐶𝐶2𝑓𝑓2(𝑦𝑦)] = 𝐶𝐶1𝐿𝐿[𝑓𝑓1(𝑦𝑦)] ± 𝐶𝐶2𝐿𝐿[𝑓𝑓2(𝑦𝑦)] 

2) Theorem on a derivative of the original 

If L[𝑓𝑓(t)] = F(s), then  

L[𝑓𝑓′(t)] = sF(s) − 𝑓𝑓(0) 

L[𝑓𝑓′′(t)] = 𝑠𝑠2F(s) − s𝑓𝑓(0) − 𝑓𝑓′(0) 

L[𝑓𝑓′′′(t)] = 𝑠𝑠3F(s) − 𝑠𝑠2𝑓𝑓(0) − 𝑠𝑠𝑓𝑓′(0)− 𝑓𝑓′′(0) 
                                                                              ......... 

L�𝑓𝑓(n)(t)� = 𝑠𝑠nF(s) − 𝑠𝑠n−1𝑓𝑓(0) − 𝑠𝑠n−2𝑓𝑓′(0)−⋯− 𝑓𝑓(n−1)(0) 

where C1 and C2 are constants. 

Example 23 

Find the Laplace transform of the function f(t) = 2 − 3sin5t + 4e2t + t2. 

 𝐹𝐹(𝑠𝑠) = 𝐿𝐿[f(t)] = L[2 − 3sin5t + 4e2t + t2] =  2L[1] − 3L[sin5t] + 4L[e2t] + L[t2] = 

=  2 ∙
1
s
− 3 ∙

5
s2 + 25

+ 4 ∙
1

s − 2
+

2!
s3
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As a result, 

 L[f(t)] =
2
s
−

15
s2 + 1

+
4

s − 2
+

2
s3

 

 

Definition: the Inverse Laplace Transform 

If L[𝑓𝑓(t)] = F(s), then the inverse Laplace transform 𝑓𝑓(t) of the function F(s) is defined as the 
improper integral 

𝑓𝑓(t) = � F(t)estds
+∞

0
 

It is often written as 

𝑓𝑓(𝑦𝑦) = 𝐿𝐿−1[𝐹𝐹(𝑠𝑠)]  

It is to be noted that usually in applications the summarized tables of elementary Laplace 
transforms and properties of the Laplace transform are used in order to find originals.  

In many practical problems the Laplace transform has the form of a rational fraction. In this 
case, the method of partial fractions can be useful in producing an expression; for those, the 
inverse Laplace transform can be easily found. 

Example 8.24   

Find the original of the function 

 F(s) =
s + 3

s(s + 1)
 

i.e.  

𝑓𝑓(𝑦𝑦) = 𝐿𝐿−1 �
s + 3

s(s + 1)
� =? 

We expand the given rational function into elementary fractions with undefined coefficients: 

F(s) =
s + 3

s(s + 1) =
A
s

+
B

s + 1
 

In order to find the unknown coefficients, we find the least common denominator and equate 
the numerators of the functions on the right-hand side and left-hand side of the obtained 
expression: 
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s + 3
s(s + 1) =

A(s + 1) + Bs
s(s + 1)  

s + 3 = A(s + 1) + Bs 

s + 3 = As + A + Bs 

1 ∙ s + 3 = (A + B)s + A 

The coefficients at s:    1=A+B, 

The coefficient at 𝑠𝑠0:   3 = A                𝐴𝐴 = 3 

It follows from the first equation that     𝐵𝐵 = 1 − 𝐴𝐴 = 1 − 3 = −2 

As a result, we have 

F(s) =
3
s

+
−2

s + 1
= 3 ∙

1
s
− 2 ∙

1
s + 1

 

Using the linearity theorem and the table of Laplace transforms, we have 

𝑓𝑓(t) = L−1[F(s)] = 𝐿𝐿−1 �3 ∙
1
s
− 2 ∙

1
s + 1

� = 3L−1 �
1
s
� − 2L−1 �

1
s + 1

� = 3 ∙ 1 − 2𝑒𝑒−𝑡𝑡 

So,  
                                               𝑓𝑓(t) = L−1[F(s)] = 3 ∙ 1 − 2𝑒𝑒−𝑡𝑡 . 

8.4.2 Application of the Laplace transform for solving differential equations 
 

As was mentioned above, the Laplace transform is one of the most popular methods for solving 
differential equations. Here we consider the application of the Laplace transform for second-
order linear differential equations with constant coefficients. 
The Laplace transform can be only used for solving differential equations with given initial 
conditions at the point t=0, i.e. only for solving Cauchy problems.   
Let us consider the linear differential equation with constant coefficients: 

𝑦𝑦𝑦𝑦" + 𝑏𝑏𝑦𝑦′ + 𝑐𝑐𝑦𝑦 = 𝑓𝑓(𝑦𝑦) 

with the initial conditions 𝑦𝑦(0) = 𝑦𝑦0  and  𝑦𝑦′(0) = 𝑦𝑦1, 

where a, b, c are constants, 𝑦𝑦 = 𝑦𝑦(𝑦𝑦) is a function of t and 𝑦𝑦 ≠ 0. 
 
The algorithm of solving a Cauchy problem by the Laplace transform is: 
 

1) Apply the Laplace transform to both sides of the differential equation 
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𝐿𝐿[𝑦𝑦𝑦𝑦" + 𝑏𝑏𝑦𝑦′ + 𝑐𝑐𝑦𝑦] = 𝐿𝐿[𝑓𝑓(𝑦𝑦)] 

2) Use the linearity theorem together with the Theorem on a derivative of the original 

𝑦𝑦𝐿𝐿[𝑦𝑦"] + 𝑏𝑏𝐿𝐿[𝑦𝑦′] + 𝑐𝑐𝐿𝐿[𝑦𝑦] = 𝐿𝐿[𝑓𝑓(𝑦𝑦)] 

 Let the Laplace transform of the unknown function y(t) be 𝐿𝐿[𝑦𝑦] = 𝑌𝑌(𝑠𝑠), then according to the 
Theorem on a derivative of the original, it yields 

L[𝑦𝑦′(t)] = sY(s) − 𝑦𝑦(0) = sY(s) − 𝑦𝑦0 

L[𝑦𝑦′′(t)] = s2Y(s) − s𝑦𝑦(0) − 𝑦𝑦′(0) = s2Y(s) − s𝑦𝑦0 − 𝑦𝑦1 

On applying the Laplace transform to the given differential equation, we have got the algebraic 
equation for the unknown function Y(s): 

a ∙ (s2Y(s) − s𝑦𝑦0 − 𝑦𝑦1) + 𝑏𝑏 ∙ (sY(s) − 𝑦𝑦0) + 𝑐𝑐 ∙ 𝑌𝑌(𝑠𝑠) = 𝐹𝐹(𝑠𝑠) 

where 𝐹𝐹(𝑠𝑠) = 𝐿𝐿[𝑓𝑓(𝑦𝑦)] is the Laplace transform of the right-hand side function. 

3) Solve the obtained algebraic equation for the function Y(s): 

Y(s)(as2 + 𝑏𝑏s + 𝑐𝑐) = 𝐹𝐹(𝑠𝑠) + 𝑦𝑦s𝑦𝑦0 + 𝑏𝑏𝑦𝑦0 + 𝑦𝑦𝑦𝑦1 

Y(s) =
𝐹𝐹(𝑠𝑠) + 𝑦𝑦s𝑦𝑦0 + 𝑏𝑏𝑦𝑦0 + 𝑦𝑦𝑦𝑦1

as2 + 𝑏𝑏s + 𝑐𝑐
 

4) Find the original y(t) of the function Y(s) using properties of the Laplace transform and the 
table of Laplace transforms as 

y(t) = L−1[Y(s)] 

Example 0.25   

Solve the Cauchy problem 

                                                      𝑦𝑦" + 9𝑦𝑦 = 𝑒𝑒2𝑡𝑡,      𝑦𝑦(0) = 1,     𝑦𝑦′(0) = 2 

1) We apply the Laplace transform to both sides of the given differential equation 

L[𝑦𝑦" + 9𝑦𝑦] = L[𝑒𝑒2𝑡𝑡] 

L[𝑦𝑦"] + 9𝐿𝐿[𝑦𝑦] = L[𝑒𝑒2𝑡𝑡] 
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Let the Laplace transform of the unknown function y(t) be L[y] = Y(s), then according to the 
Theorem on a derivative of original, it yields 

L[y′(t)] = sY(s) − y(0) = sY(s) − 1 

L[y′′(t)] = s2Y(s) − sy(0) − y′(0) = s2Y(s) − s ∙ 1 − 2 

The Laplace transform of the right-hand side function is 

L[𝑒𝑒2𝑡𝑡] =
1

s − 2
 

After substituting L[y′′(t)], L[y(t)] and L[𝑒𝑒2𝑡𝑡] , we obtain the algebraic equation for the 
unknown function Y(s): 

s2 ∙ Y(s) − s − 2 + 9 ∙ Y(s) =
1

s − 2
 

3) We solve the obtained algebraic equation for the function Y(s): 

Y(s) ∙ (s2 + 9) =
1

s − 2
+ s + 2 

Y(s) =
1

(s − 2)(s2 + 9)
+

s
(s2 + 9)

+
2

(s2 + 9)
 

4) We find the original y(t) for the function Y(s).   

a) First, we expand the first term on the right-hand side into elementary fractions with 
undefined coefficients: 

1
(s − 2)(s2 + 9)

=
A

s − 2
+

Bs + C
s2 + 9

=
A(s2 + 9) + (Bs + C)(s − 2)

(s − 2)(s2 + 9)
 

Thus, we get  

1 = A(s2 + 9) + (Bs + C)(s − 2) 

1 = As2 + 9A + Bs2 − 2Bs + Cs − 2C 

0 ∙ s2 + 0 ∙ s + 1 = (A + B)s2 + (−2B + C)s + 9A − 2C 

The coefficients at 𝑠𝑠2 are  0 = A + B  

The coefficients at s are    0=-2B+C, 
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coefficients at 𝑠𝑠0  are         1 = 9A − 2C                           

Solving the system of equations for the unknown coefficients A, B and C, we obtain:  

𝐴𝐴 =
1

13
,      𝐵𝐵 = −

1
13

,        𝐶𝐶 = −
2

13
 

As a result, we have 

1
(s − 2)(s2 + 9)

=
1

13
s − 2

+
− 1

13 s − 2
13

s2 + 9
=

1
13

∙
1

s − 2
−

1
13

∙
s

s2 + 9
−

2
13

∙
1

s2 + 9
 

We substitute the obtained expression into the expression for Y(s) instead of the first term: 

 Y(s) =
1

13
∙

1
s − 2

−
1

13
∙

s
s2 + 9

−
2

13
∙

1
s2 + 9

+
s

s2 + 9
+

2
s2 + 9

 

We simplify the obtained expression as 

Y(s) =
1

13
∙

1
s − 2

+
12
13

∙
s

s2 + 9
+

24
13

∙
1

s2 + 9
 

5) We find the original for the function Y(s): 

𝑦𝑦(t) = L−1[Y(𝐜𝐜)] = L−1 �
1

13
∙

1
s − 2

+
12
13

∙
s

s2 + 9
+

24
13

∙
1

s2 + 9
� = 

=
1

13
∙ L−1 �

1
s − 2

� +
12
13

∙ L−1 �
s

s2 + 9
� +

24
13

∙ L−1 �
1
3
∙

3
s2 + 9

� = 

=
1

13
∙ L−1 �

1
s − 2

� +
12
13

∙ L−1 �
s

s2 + 9
� +

24
13

∙
1
3
∙ L−1 �

3
s2 + 9

� = 

=
1

13
e2𝑡𝑡 +

12
13

cos3𝑦𝑦 +
24
39

∙ sin3𝑦𝑦 

Thus, we have obtained the solution of the given Cauchy problem: 

𝑦𝑦(t) = L−1[Y(s)] =
1

13
e2𝑡𝑡 +

12
13

cos3𝑦𝑦 +
24
39

sin3𝑦𝑦 

8.4.3 Exercises 
 
Exercise 8.11. 
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Solve the Cauchy problem using the Laplace transform 

                                                                   𝑦𝑦" + 4𝑦𝑦′ + 5𝑦𝑦 = 1  ,    𝑦𝑦(0) = 0,    𝑦𝑦′(0) = 1 

Solution: 

1) We apply the Laplace transform to the given differential equation: 

𝐿𝐿[𝑦𝑦" + 4𝑦𝑦′ + 5𝑦𝑦] = 𝐿𝐿[1] 

𝐿𝐿[𝑦𝑦"] + 4𝐿𝐿[𝑦𝑦′] + 5𝐿𝐿[𝑦𝑦] = 𝐿𝐿[1] 

    Let the Laplace transform of the unknown function y(t) be 𝐿𝐿[𝑦𝑦] = 𝑌𝑌(𝑠𝑠), then according to 
the Theorem on a derivative of original, it yields 

L[𝑦𝑦′(t)] = sY(s) − 𝑦𝑦(0) = sY(s) − 0 = sY(s) 

L[𝑦𝑦′′(t)] = s2Y(s) − s𝑦𝑦(0) − 𝑦𝑦′(0) = s2Y(s) − s ∙ 0 − 1 = s2Y(s) − 1 

The result of application of the Laplace transform to the given differential equation gives us the 
algebraic equation for the unknown function Y(s): 

s2Y(s) − 1 + 4 ∙ sY(s) + 5 ∙ 𝑌𝑌(𝑠𝑠) =
1
𝑠𝑠

 

3) We solve the obtained algebraic equation for the function Y(s): 

Y(s)(s2 + 4s + 5) =
1
𝑠𝑠

+ 1 

Y(s)(s2 + 4s + 5) =
1 + 𝑠𝑠
𝑠𝑠

 

Y(s) =
1 + 𝑠𝑠

𝑠𝑠(s2 + 4s + 5)
 

4) We find the original y(t) for the function Y(s) using properties of the Laplace transform and 
the table of Laplace transforms, as 

y(t) = L−1[Y(s)] 

For this purpose, we expand the function on the right-hand side into elementary fractions with 
undefined coefficients: 

1 + 𝑠𝑠
𝑠𝑠(s2 + 4s + 5)

=
A
s

+
Bs + C

s2 + 4s + 5
=

A(s2 + 4s + 5) + (Bs + C)s
s(s2 + 4s + 5)
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So that  

s + 1 = A(s2 + 4s + 5) + (Bs + C)s 

s + 1 = As2 + 4As + 5A + Bs2 + Cs 

0 ∙ s2 + 1 ∙ s + 1 = (A + B)s2 + (4A + C)s + 5A 

The coefficients at s2 :  0 = A + B  
The coefficients at s:    1 = 4A + C, 
The coefficients at s0:   1 = 5A                           
 
Solving the system of equations for the unknown coefficients, we have:  

     A =
1
5

,    B = −
1
5

,     C =
1
5

 

As a result, we have 

Y(s) =
1 + s

s(s2 + 4s + 5)
=

1
5
s

+
−1

5 s + 1
5

s2 + 4s + 5
=

1
5
∙

1
s
−

1
5
∙

s − 1
s2 + 4s + 5

 

5) We find the original for the function Y(s): 

y(t) = L−1[Y(s)] = L−1 �
1
5
∙

1
s
−

1
5
∙

s − 1
s2 + 4s + 5

� =
1
5
∙ L−1 �

1
s
� −

1
5
∙ L−1 �

s − 1
s2 + 4s + 5

� 

It follows from the Laplace transform table that   L−1 �1
s
� = 1, 

However, for finding 

L−1 �
s − 1

s2 + 4s + 5
� 

first, we should transform the fraction 

s − 1
s2 + 4s + 5

=
s − 1

(s + 2)2 + 1
=

s + 2 − 3
(s + 2)2 + 1

=
s + 2

(s + 2)2 + 1
−

3
(s + 2)2 + 1

 

Then  

L−1 �
s + 2

(s + 2)2 + 1
−

3
(s + 2)2 + 1

� = L−1 �
s + 2

(s + 2)2 + 1
� − 3 ∙ L−1 �

1
(s + 2)2 + 1

� = 
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= 𝑒𝑒−2𝑡𝑡cos𝑦𝑦 − 3𝑒𝑒−2𝑡𝑡sin𝑦𝑦 

As a result, we have 
 

y(t) =
1
5
∙ 1 −

1
5
∙ (𝑒𝑒−2𝑡𝑡cos𝑦𝑦 − 3𝑒𝑒−2𝑡𝑡sin𝑦𝑦) =

1
5
−
𝑒𝑒−2𝑡𝑡

5
∙ (cos𝑦𝑦 − 3sin𝑦𝑦) 
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8.5 CONNECTIONS AND APPLICATIONS 
 

Example 1: 

Ship stability is a maritime safety issue that needs to be explored even at the design stage. 
Rolling and pitching of the ship in the water are extremely important factors affecting the 
stability of a is the  

1) Rolling of a vessel from one side to the another one, occurring in calm water without 
resistance is described by the following second-order differential equation: 

𝜃𝜃" + 𝑠𝑠𝜃𝜃2𝜃𝜃 = 0 

where 𝜃𝜃 = 𝜃𝜃(𝑦𝑦) is the rolling amplitude (Fig.3). 

𝑠𝑠𝜃𝜃  is the circular frequency of free (natural) vibrations during the rolling without resistance. 

 

Figure 8.3 Rolling of a vessel 

This equation is a second-order linear homogeneous differential equation with constants 
coefficients. Let us solve this equation.  

The auxiliary equation is 

𝑘𝑘2 + 𝑠𝑠𝜃𝜃2 = 0, 

whose roots are complex numbers  

𝑘𝑘1 = 𝑠𝑠𝜃𝜃𝑠𝑠  , 𝑘𝑘2 = −𝑠𝑠𝜃𝜃𝑠𝑠   

The general solution of the equation is 

𝜃𝜃(𝑦𝑦) = 𝐶𝐶1 cos(𝑠𝑠𝜃𝜃𝑦𝑦) + 𝐶𝐶2 sin(𝑠𝑠𝜃𝜃𝑦𝑦) 

 

2) Taking into account the resistance during the rolling in calm water, the equation of motion 
of a vessel takes the form 

𝜃𝜃" + 2𝜇𝜇𝜃𝜃𝜃𝜃′ + 𝑠𝑠𝜃𝜃2𝜃𝜃 = 0 
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where 𝜇𝜇𝜃𝜃 is the relative coefficient of resistance. 

The corresponding auxiliary equation is 

𝑘𝑘2 + 2𝜇𝜇𝜃𝜃𝑘𝑘 + 𝑠𝑠𝜃𝜃2 = 0, 

whose roots are  

𝑘𝑘1 = −𝜇𝜇𝜃𝜃 + 𝑠𝑠 �𝜇𝜇𝜃𝜃2 − 𝑠𝑠𝜃𝜃2  , 𝑘𝑘2 = −𝜇𝜇𝜃𝜃 − 𝑠𝑠 �𝜇𝜇𝜃𝜃2 − 𝑠𝑠𝜃𝜃2 

 

𝜃𝜃(𝑦𝑦) = 𝐶𝐶1 e−μθtcos(𝜔𝜔𝜃𝜃 ∙ 𝑦𝑦) + 𝐶𝐶2 e−μθtsin(𝜔𝜔𝜃𝜃 ∙ 𝑦𝑦) 

where 

𝜔𝜔𝜃𝜃 = �𝜇𝜇𝜃𝜃2 − 𝑠𝑠𝜃𝜃2   is a natural (their own) frequency during the rolling with resistance. 

It should be noted that similar differential equations describe also pitching and heaving 
motions of a vessel. 

 

Example 2: 

Any modern vessel is not complete without electrical and electro-mechanical systems. An 
alternating-current electrical circuit is a component of any such system. Transition processes 

in such electrical circuits that occur in a short period of time after switching on or off (after 
connecting the circuit to voltage or after disconnecting the circuit from voltage), as well as 
when the capacitive element is turned on or off, are described by the ordinary differential 
equations. As an example, we can consider one of the easiest electrical circuits: a resistor-

inductor-capacitor circuit (RLC).  

 

Figure 8.4  A resistor-inductor-capacitor circuit 

1) For example, in the case of source of unchanging voltage, the following second-order 
differential equation describes the transition processes in RLC circuit:  

𝐿𝐿
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑦𝑦2

+ 𝑅𝑅
𝑑𝑑𝑠𝑠
𝑑𝑑𝑦𝑦

+
1
𝐶𝐶
𝑠𝑠 = 0 

where  
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t is the time,  

i(t) is the current admitted through the circuit, 

R is the effective resistance of the combined load, source, and components, 

L is the inductance of the inductor component, 

C is the capacitance of the capacitor component. 

This is a homogeneous second-order ordinary differential equation whose characteristic 
equation is 

𝐿𝐿𝑘𝑘2 + 𝑅𝑅𝑘𝑘 +
1
𝐶𝐶

= 0 

or  

𝑘𝑘2 +
𝑅𝑅
𝐿𝐿
𝑘𝑘 +

1
𝐿𝐿𝐶𝐶

= 0 

The roots are 

𝑘𝑘1 = −
𝑅𝑅
2𝐿𝐿

+ ��
𝑅𝑅
2𝐿𝐿
�
2

−
1
𝐿𝐿𝐶𝐶

                  𝑦𝑦𝑠𝑠𝑑𝑑    𝑘𝑘2 = −
𝑅𝑅

2𝐿𝐿
− ��

𝑅𝑅
2𝐿𝐿
�
2

−
1
𝐿𝐿𝐶𝐶

 

The solution of the differential equation has the form 

𝑠𝑠(𝑦𝑦) = 𝐶𝐶1𝑒𝑒𝑘𝑘1𝑡𝑡 + 𝐶𝐶2𝑒𝑒𝑘𝑘2𝑡𝑡 

where  𝐶𝐶1  and 𝐶𝐶2  are terms of amplitude. 

2) If a RL circuit with constant resistance R and inductance L at time t = 0 is connected to voltage 
U0 (for example, battery), then the transition process within a short time period after switching 
on is described by the following  1st order linear inhomogeneous differential equation with 
constant coefficients 

𝐿𝐿
𝑑𝑑𝑠𝑠
𝑑𝑑𝑦𝑦

+ 𝑅𝑅 ∙ 𝑠𝑠 = 𝑈𝑈0 

Example 3: 

Ships often carry containers with various liquids so that liquid leakage problems are essential. 
In this connection, we consider the problem of the liquid flowing out of a cylindrical tank of 
radius R through a small hole of radius r at the bottom of the container.  

https://en.wikipedia.org/wiki/Inductor
https://en.wikipedia.org/wiki/Capacitor
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Liquid level in the tank at time moment t is a function of time which 
is described by the following differential equation:  

𝑅𝑅2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

+ 𝑟𝑟2𝑘𝑘�2g𝑑𝑑 = 0 

where  

     t is time, 

     g is the gravitational acceleration (g=9.80665 m/s2), 

     k is coefficient of the flow rate that depends on the viscosity of  

        the liquid, 

      z=z(t)  is the liquid level above the hole at time moment t . 

 

Assuming, that in the initial time moment t=0 the liquid level was H, let us find: 

a) unknown function of liquid level in the tank  z=z(t) ; 

b) time T during which the liquid will completely  drain out of the tank.  

 

In order to find unknown function of liquid level in the tank z(t), we solve the given 
differential equation. This is a separable-variables equation.  

𝑅𝑅2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

= −𝑟𝑟2�2g ∙ √𝑑𝑑 

𝑑𝑑𝑑𝑑
√𝑑𝑑

= −
𝑟𝑟2

𝑅𝑅2 �
2g𝑑𝑑𝑦𝑦 

�
𝑑𝑑𝑑𝑑
√𝑑𝑑

= −
𝑟𝑟2

𝑅𝑅2 �
2g�𝑑𝑑𝑦𝑦 

2√𝑑𝑑 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑦𝑦 + 𝐶𝐶 

Taking into account, that at the initial time moment t=0 the height of the liquid in the container 
was H, we get 

2√𝐻𝐻 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 0 + 𝐶𝐶 

𝐶𝐶 = 2√𝐻𝐻 

2√𝑑𝑑 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑦𝑦 + 2√𝐻𝐻 

 

Figure 8.5 

 

R
z

r
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As a result, we obtain the function z (t), which describes the liquid level in the tank at time 
moment t: 

𝑑𝑑(𝑦𝑦) = �−
𝑟𝑟2

2𝑅𝑅2 �
2g ∙ 𝑦𝑦 + √𝐻𝐻�

2

 

In order to find the time T during which the liquid will completely drain out of the tank, we take 
into account, that at the time moment t=T, the level of the liquid in the container will be z=0. 
Then we obtain the dependence of time on the height of the fluid  

2√0 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑇𝑇 + 2√𝐻𝐻 

𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑇𝑇 = 2√𝐻𝐻 

Expressing T, we get the time during which the liquid will completely drain out of the tank. 

𝑇𝑇 =
𝑅𝑅2

𝑟𝑟2
�

2𝐻𝐻
g

 

Example 4: 

There are many marine ecological issues where differential equations are useful. For example, 
the mathematical modelling of propagation and extinction of fish population that is important 
for fish catch control.   

 
Figure 8.6 

 
Fish population P(t) in the lake at the time moment t can be described by the first-order 
differential equation 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑦𝑦

= 𝑘𝑘𝑃𝑃 �1 −
𝑃𝑃
𝑀𝑀
� 

where  
    t is time,    k is the growth parameter,   
     M  is the carrying capacity, representing the largest population that the environment can 
support.  
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If for some reason the population exceeds the carrying capacity, the population will decrease; 
and otherwise, as long as the population is less than the carrying capacity, the population will 
increase. This equation is known as the logistic equation. 

The population P(t) of codfish in a certain marine fishery is modelled by a modified logistic 
equation  

𝑑𝑑𝑃𝑃
𝑑𝑑𝑦𝑦

= 𝑘𝑘𝑃𝑃 �1 −
𝑃𝑃
𝑀𝑀
� − 𝐻𝐻 

where H is the rate at which fish are harvested. 

An important question in this problem is how the fate of the fish population depends on the 
parameter H. 

 

Example 5: 

Differential equations are used in beam theory which is an important tool in the sciences, 
especially in structural and mechanical engineering. It is also very important in ship design. For 
example, we consider the Euler–Bernoulli equation which describes the relationship between 
the beam's deflection and the applied load. A beam is a constructive element capable of 
withstanding heavy loads in bending.  

 Figure 8.7 

 
In the case of small deflections, the beam shape can be described by a fourth-order linear 
differential equation 

𝐸𝐸 ∙ 𝐼𝐼
𝑑𝑑4𝑤𝑤
𝑑𝑑𝑥𝑥4

= 𝑞𝑞(𝑥𝑥) 

where q(x) is external load acting on the beam, 

             E is the modulus of elasticity of the beam, 
              I is the second moment of area of the beam's cross-section. 

q
(
x
) 

x 

w
(
x
) 

https://en.wikipedia.org/wiki/Structural_engineering
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Deflection_(engineering)
https://en.wikipedia.org/wiki/Second_moment_of_area
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The curve w(x) describes the deflection of the beam in the direction z at some position x.  
Often, the product 𝐸𝐸 ∙ 𝐼𝐼   is a constant, known as the flexural rigidity. 
This equation under the appropriate boundary conditions determines the deflection of a loaded 
beam. 
 

Example 6: 

Ordinary differential equations are widely used for cooling/heating problems.  

For example, consider a process of cooling down of a heated body placed in an environment. 
The temperature of a hot object decreases with the rate proportional to the difference 
between its temperature and the temperature of the surrounding environment. If the 
temperature of the environment is given by E(t), then the following differential equation 
describes the temperature of the body T(t) as the function of time:  

𝑑𝑑𝑇𝑇
𝑑𝑑𝑦𝑦

= −𝑘𝑘(𝑇𝑇(𝑦𝑦) − 𝐸𝐸(𝑦𝑦)) 

where k>0  is a physical constant depending on the materials and sizes of the bodies. 

If the object, whose temperature is being modelled, contains a source of heat, then the cooling 
of the body is described by the differential equation  

𝑑𝑑𝑇𝑇
𝑑𝑑𝑦𝑦

= −𝑘𝑘(𝑇𝑇(𝑦𝑦) − 𝐸𝐸(𝑦𝑦)) + 𝑚𝑚𝐻𝐻(𝑦𝑦) 

where m is a positive constant, inversely proportional to the heat capacity of the object and 
H(t) denotes the rate that heat is generated within the object. (H(t) would be negative in some 
cases, such as air conditioning).  

 

 

https://en.wikipedia.org/wiki/Flexural_rigidity
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