

4.3 Scalar, vector and mixed triple products

Scalar product or Dot product of vector \vec{a} and vector \vec{b} is equal to the product of their magnitudes and the cosine of the angle between these vectors. $\vec{a} \circ \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \sphericalangle (\vec{a}, \vec{b})$

Vectors \vec{a} and \vec{b} are perpendicular ($\vec{a} \perp \vec{b}$) if and only if $\vec{a} \circ \vec{b} = 0$.

Vector product or Cross product

If \vec{a} and \vec{b} are two vectors in space, then their *cross product:*

 $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \varphi$, where φ is the angle between vectors.

The Cross Product $\vec{a} \times \vec{b}$ of two vectors is another vector \vec{c} that is at right angles to both.

Figure 4.13 Vector product

The vector or cross product (*red*) is:

• zero in length when vectors \vec{a} and \vec{b} point in the same, or opposite, direction

Figure 4.14 Vector product when vectors \vec{a} and \vec{b} point in the opposite direction

• reaches maximum length when vectors $ec{a}$ and $ec{b}$ are at right angles.

From the geometric perspective, $|\vec{a} \times \vec{b}|$ is the **area of the parallelogram spanned** by vectors \vec{a} and \vec{b} .

Figure 4.15 Area of the parallelogram spanned by vectors a $\vec{}$ and b $\vec{}$.

Vector $\vec{a} \times \vec{b}$ is perpendicular to vectors \vec{a} and \vec{b} .

The features of vector product:

- (1) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- (2) $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$

$$(\vec{a} + \vec{b}) \times \vec{c} = (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c})$$

(3)
$$(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b})$$

Mixed product of vectors \vec{a} , \vec{b} and \vec{c} is scalar:

 $(\vec{a} \times \vec{b}) \circ \vec{c} = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cos \varphi$, where φ is the angle between vectors $\vec{a} \times \vec{b}$ and \vec{c} . Volume V of the parallelepiped determined by vectors \vec{a} , \vec{b} and \vec{c} is calculated as:

$$V = |(\vec{a} \times \vec{b}) \circ \vec{c}|.$$

It holds that:

(1)
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

(2)
$$\begin{cases} \vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) \\ (\vec{a} + \vec{b}) \times \vec{c} = (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c}) \end{cases}$$

(3)
$$(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b})$$