4.3 Scalar, vector and mixed triple products

Scalar product or Dot product of vector \vec{a} and vector \vec{b} is equal to the product of their magnitudes and the cosine of the angle between these vectors.

$$
\vec{a} \circ \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \nless(\vec{a}, \vec{b})
$$

Vectors \vec{a} and \vec{b} are perpendicular ($\vec{a} \perp \vec{b}$) if and only if $\vec{a} \circ \vec{b}=0$.

Vector product or Cross product

If \vec{a} and \vec{b} are two vectors in space, then their cross product:
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \varphi$, where φ is the angle between vectors.
The Cross Product $\vec{a} \times \vec{b}$ of two vectors is another vector \vec{c} that is at right angles to both.

Figure 4.13 Vector product

The vector or cross product (red) is:

- zero in length when vectors \vec{a} and \vec{b} point in the same, or opposite, direction

Figure 4.14 Vector product when vectors $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ point in the opposite direction

- reaches maximum length when vectors \vec{a} and \vec{b} are at right angles.

From the geometric perspective, $|\vec{a} \times \vec{b}|$ is the area of the parallelogram spanned by vectors \vec{a} and \vec{b}.

Figure 4.15 Area of the parallelogram spanned by vectors $\mathrm{a} \rightarrow$ and $\mathrm{b} \overrightarrow{\text {. }}$
Vector $\vec{a} \times \vec{b}$ is perpendicular to vectors \vec{a} and \vec{b}.

The features of vector product:
(1) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
(2) $\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c})$

$$
(\vec{a}+\vec{b}) \times \vec{c}=(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c})
$$

(3) $(\lambda \vec{a}) \times \vec{b}=\vec{a} \times(\lambda \vec{b})=\lambda(\vec{a} \times \vec{b})$

Mixed product of vectors \vec{a}, \vec{b} and \vec{c} is scalar:
$(\vec{a} \times \vec{b}) \circ \vec{c}=|\vec{a} \times \vec{b}| \cdot|\vec{c}| \cos \varphi$, where φ is the angle between vectors $\vec{a} \times \vec{b}$ and \vec{c}. Volume V of the parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is calculated as:

$$
V=|(\vec{a} \times \vec{b}) \circ \overrightarrow{\boldsymbol{c}}| .
$$

It holds that:
(1) $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$
(2) $\left\{\begin{array}{l}\vec{a} \times(\vec{b}+\vec{c})=(\vec{a} \times \vec{b})+(\vec{a} \times \vec{c}) \\ (\vec{a}+\vec{b}) \times \vec{c}=(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c})\end{array}\right.$
(3) $(\lambda \vec{a}) \times \vec{b}=\vec{a} \times(\lambda \vec{b})=\lambda(\vec{a} \times \vec{b})$

