

4.4 Vectors in rectangular coordinate system

Let \vec{E} be the unit point on the \vec{x} -axis, \vec{F} the unit point on \vec{y} -axis, \vec{G} the unit point on \vec{z} -axis and point \vec{O} the origin in 3D-space R^3 . Then radius vector \vec{OE} is equal to unit vector \vec{i} , radius vector \vec{OF} equal to unit vector \vec{j} and radius vector \vec{OG} equal to unit vector \vec{k} .

The vectors \vec{i} , \vec{j} and \vec{k} are the *unit vectors* in the positive *x*, *y*, and *z* direction, respectively. In terms of coordinates, we can write them as $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$ and $\vec{k} = (0,0,1)$.

Figure 4.16 The standard unit vectors in three dimensions

A vector in three-dimensional space

Any point P in space can be assigned three coordinates $P = (a_x, a_y, a_z)$ and its position vector $\vec{a} = \vec{OP}$. In Figure 4.17, the vector \vec{a} is drawn as the pink arrow with initial point fixed at the origin.

We assign coordinates of a vector \vec{a} by orthogonal projecting the vector \vec{a} on each axis x, y and z.

Black vectors $\overrightarrow{a_x} = \overrightarrow{OP_1}, \overrightarrow{a_y} = \overrightarrow{OP_2}$ and $\overrightarrow{a_z} = \overrightarrow{OP_3}$ show the projections of $\vec{a} = \overrightarrow{OP}$ on each axis and represent *the scalar components or coordinates* (a_x, a_y, a_z) .

Any three-dimensional vector \vec{a} can be represented as linear combination of three unit vectors \vec{i} , \vec{j} , and \vec{k} i.e. it can be expressed as the sum of the products of a scalar component and a unit vector lying on the corresponding coordinate axis in the form

$$\vec{a} = (a_x, a_y, a_z) = a_x \vec{\iota} + a_y \vec{J} + a_z \vec{k}$$

The magnitude of that position vector of point P is equal to: $|\vec{a}| = \sqrt{(a_x)^2 + (a_y)^2 + (a_z)^2}$.

Figure 4.17 A vector \vec{a} in three-dimensional space

Component Form of a Vector in three-dimensional space

Let be \overrightarrow{AB} a vector with initial point $A(x_{i}, y_{i}, z_{i})$ and terminal point $T(x_{t}, y_{t}, z_{t})$. The component form of the vector \overrightarrow{AB} can be expressed as $\overrightarrow{AB} = (x_{t}, -x_{i}, y_{t}, -y_{i}, z_{t}, -z_{i})$.

The magnitude of that vector is equal to:

$$\left| \overrightarrow{AB} \right| = \sqrt{\left(x_{t_i} - x_{i_i} \right)^2 + \left(y_{t_i} - y_{i_i} \right)^2 + \left(z_{t_i} - z_{i_i} \right)^2}.$$

A vector in the-plane

Each point P in the Cartesian system in the plane is identified with its x and y coordinates, $P(a_x, a_y)$.

Cartesian coordinates system in the plane is defined by an ordered triple $(0, \vec{i}, \vec{j})$ where O is the origin, \vec{i} and \vec{j} are two non-collinear unit vectors:

- $ec{\iota}\,$ unit vector on the abscissa axis
- \vec{j} unit vector on the ordinate axis.

The position vector of the point P, \overrightarrow{OP} may be represented as a linear combination of unit vectors:

$$\overrightarrow{OP} = a_x \vec{\iota} + a_y \vec{j}$$

Figure 4.18 The components of a vector in the plane

Scalars a_x and a_y are called components of the vector \overrightarrow{OP} .

Using the Pythagorean Theorem, we can obtain an expression for the **magnitude** of a vector in terms of its components.

The magnitude of that position vector of point P is equal to:

$$\left|\overrightarrow{OP}\right| = \sqrt{(a_x)^2 + (a_y)^2}.$$

Component Form of a Vector in E^2

Let be \vec{a} a vector with initial point $(x_{i,}, y_{i,})$ and terminal point $(x_{t,}, y_{t,})$. The component form of the vector \vec{a} can be expressed as $\vec{a} = (x_{t,} - x_{i,}, y_{t,} - y_{i,})$.

The magnitude of that vector is equal to:

$$|\vec{a}| = \sqrt{(x_{t,} - x_{i,})^2 + (y_{t,} - y_{i,})^2}.$$

Example:

Draw in the plane the vector $|\overrightarrow{AB}|$ whose initial point A is (1, 2) and terminal point B is (4, 3) and find its magnitude.

Solution:

In some cases, only the magnitude and direction of a vector are known, not the points. For these vectors, we can identify the horizontal and vertical components using trigonometry (Figure 4.19).

Figure 4.19 The components of a vector form the cathetus of a right triangle, with the vector as the hypotenuse