4.4 Vectors in rectangular coordinate system

Let E be the unit point on the x-axis, F the unit point on y-axis, G the unit point on z-axis and point O the origin in 3D-space R^{3}. Then radius vector $\overrightarrow{O E}$ is equal to unit vector $\vec{\imath}$, radius vector $\overrightarrow{O F}$ equal to unit vector $\vec{\jmath}$ and radius vector $\overrightarrow{O G}$ equal to unit vector \vec{k}.

The vectors $\vec{\imath}, \vec{\jmath}$ and \vec{k} are the unit vectors in the positive $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} direction, respectively. In terms of coordinates, we can write them as $\vec{\imath}=(1,0,0), \vec{\jmath}=(0,1,0)$ and $\vec{k}=(0,0,1)$.

Figure 4.16 The standard unit vectors in three dimensions

A vector in three-dimensional space

Any point P in space can be assigned three coordinates $P=\left(a_{x}, a_{y}, a_{z}\right)$ and its position vector $\vec{a}=\overrightarrow{O P}$. In Figure 4.17, the vector \vec{a} is drawn as the pink arrow with initial point fixed at the origin.

We assign coordinates of a vector \vec{a} by orthogonal projecting the vector \vec{a} on each axis x, y and z .

Black vectors $\overrightarrow{a_{x}}=\overrightarrow{O P_{1}}, \overrightarrow{a_{y}}=\overrightarrow{O P_{2}}$ and $\overrightarrow{a_{z}}=\overrightarrow{O P_{3}}$ show the projections of $\vec{a}=\overrightarrow{O P}$ on each axis and represent the scalar components or coordinates $\left(a_{x}, a_{y}, a_{z}\right)$.

Any three-dimensional vector \vec{a} can be represented as linear combination of three unit vectors $\vec{\imath}, \vec{\jmath}$, and \vec{k} i.e. it can be expressed as the sum of the products of a scalar component and a unit vector lying on the corresponding coordinate axis in the form

$$
\vec{a}=\left(a_{x}, a_{y}, a_{z}\right)=a_{x} \vec{\imath}+a_{y} \vec{\jmath}+a_{z} \vec{k}
$$

The magnitude of that position vector of point P is equal to: $|\vec{a}|=\sqrt{\left(a_{x}\right)^{2}+\left(a_{y}\right)^{2}+\left(a_{z}\right)^{2}}$.

Figure 4.17 A vector $\overrightarrow{\boldsymbol{a}}$ in three-dimensional space

Component Form of a Vector in three-dimensional space

Let be $\overrightarrow{A B}$ a vector with initial point $A\left(x_{i}, y_{i}, z_{i}\right)$ and terminal point $T\left(x_{t}, y_{t}, z_{t}\right)$. The component form of the vector $\overrightarrow{A B}$ can be expressed as $\overrightarrow{A B}=\left(x_{t}-x_{i,}, y_{t,}-y_{i,}, z_{t}, z_{i,}\right)$.

The magnitude of that vector is equal to:

$$
|\overrightarrow{A B}|=\sqrt{\left(x_{t,}-x_{i,}\right)^{2}+\left(y_{t,}-y_{i,}\right)^{2}+\left(z_{t,}-z_{i,}\right)^{2}}
$$

A vector in the-plane

Each point P in the Cartesian system in the plane is identified with its \boldsymbol{x} and \boldsymbol{y} coordinates, $P\left(a_{x}, a_{y}\right)$.

Cartesian coordinates system in the plane is defined by an ordered triple $(0, \vec{\imath}, \vec{\jmath})$ where 0 is the origin, $\vec{\imath}$ and $\vec{\jmath}$ are two non-collinear unit vectors:
$\vec{\imath}$ - unit vector on the abscissa axis
\vec{J} - unit vector on the ordinate axis.
The position vector of the point $P, \overrightarrow{O P}$ may be represented as a linear combination of unit vectors:

$$
\overrightarrow{O P}=a_{x} \vec{\imath}+a_{y} \vec{\jmath}
$$

Figure 4.18 The components of a vector in the plane

Scalars a_{x} and a_{y} are called components of the vector $\overrightarrow{O P}$.
Using the Pythagorean Theorem, we can obtain an expression for the magnitude of a vector in terms of its components.

The magnitude of that position vector of point P is equal to:

$$
|\overrightarrow{O P}|=\sqrt{\left(a_{x}\right)^{2}+\left(a_{y}\right)^{2}}
$$

Component Form of a Vector in E^{2}

Let be \vec{a} a vector with initial point $\left(x_{i}, y_{i}\right)$ and terminal point $\left(x_{t}, y_{t}\right)$. The component form of the vector \vec{a} can be expressed as $\vec{a}=\left(x_{t}-x_{i,}, y_{t,}-y_{i,}\right)$.

The magnitude of that vector is equal to:

$$
|\vec{a}|=\sqrt{\left(x_{t,}-x_{i,}\right)^{2}+\left(y_{t,}-y_{i,}\right)^{2}}
$$

Example.

Draw in the plane the vector $|\overrightarrow{A B}|$ whose initial point A is $(1,2)$ and terminal point B is $(4,3)$ and find its magnitude.

Solution:

$$
\begin{aligned}
|\overrightarrow{A B}| & =\sqrt{3^{2}+1^{2}} \\
|\overrightarrow{A B}| & =\sqrt{10} \approx 3.2
\end{aligned}
$$

In some cases, only the magnitude and direction of a vector are known, not the points. For these vectors, we can identify the horizontal and vertical components using trigonometry (Figure 4.19).

Figure 4.19 The components of a vector form the cathetus of a right triangle, with the vector as the hypotenuse

