

# 4.5 Performing Operations in Component Form

### Scalar multiplication and Vector addition

• Scalar multiplication:

$$\lambda \cdot \vec{a} = (\lambda \cdot a_{x_i}, \lambda \cdot a_{y_i}, \lambda \cdot a_{z_i})$$

• Vector addition:

$$\vec{a} + \vec{b} = (a_{x,i}, a_{y,i}, a_{z,i}) + (b_{x,i}, b_{y,i}, b_{z,i}) = (a_{x,i} + b_{x,i}, a_{y,i} + b_{y,i}, a_{z,i} + b_{z,i})$$

## Example:

- Let  $\vec{a}$  be the vector with initial point (1, 1) and terminal point (3, -4), and let  $\vec{b} = (-1, 4)$ .
  - a) Express  $\vec{a}$  in component form and find  $\|\vec{a}\|$ . Then, using algebra, find
  - b)  $\vec{a} + \vec{b}$
  - c)  $3\vec{b}$
  - d)  $\overrightarrow{2a} \overrightarrow{b}$ .

### Solution:

a) 
$$\vec{a} = (3-1, -4-1) = (2, -5)$$

 $\vec{a} + \vec{b} = (2, -5) + (-1, 4) = (2 + (-1), -5 + 4) = (1, -1)$  (orange vector on Figure 4.20)

b) 
$$3\vec{b} = 3(-1,4) = (3 \cdot (-1), 3 \cdot 4) = (-3,12)$$
  
c)  $\vec{2a} - \vec{b} = 2 \cdot (2,-5) - (-1,4) = (4,-10) + (1,-4) = (4+1,-10-4) = (5,-14)$ 



Figure 4.20 The component form of the vector  $\vec{a}$  is  $\vec{a} = (2, -5)$ . In component form,  $\vec{a} + \vec{b} = (1, -1)$ 

**Dot or scalar product of vectors**  $\vec{a}$  and  $\vec{b}$  is equal to:

$$\vec{a} \circ \vec{b} = a_x b_x + a_y b_y + a_z b_z$$
.

The result from scalar product of two vectors is always a real number.

If the angle between two verctors  $\vec{a}$  and  $\vec{b}$  is 90°, then  $\vec{a} \cdot \vec{b} = 0$ , because  $cos(90^\circ) = 0$ .

Angle between vectors  $\vec{a}$  and  $\vec{b}$  is calculated according to the formula for dot product:

$$\cos \triangleleft (\vec{a}, \vec{b}) = \frac{\vec{a} \circ \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}.$$

*Cross or vector product* of vectors  $\vec{a}$  and  $\vec{b}$  can be calculated according to the formula

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$

The result from cross or vector product of two vectors is always a vector.

*Mixed triple product* is calculated according to the formula:



$$\left(\vec{a}\times\vec{b}\right)\circ\vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

### Example:

Let are given the vectors:  $\vec{a} = (1, 0, 1)$  and  $\vec{b} = (2, -2, 2)$ . Determine the angle  $\varphi = \triangleleft (\vec{a}, \vec{b})$ .

Solution:

$$cos\varphi = \frac{(1,0,1) \cdot (2,-2,2)}{\sqrt{1^2 + 0^2 + 1^2} \cdot \sqrt{2^2 + (-2)^2 + 2^2}} = \frac{2+0+2}{\sqrt{2} \cdot \sqrt{12}} = \frac{4}{2\sqrt{6}}$$
$$\varphi = 35^{\circ}15'52''$$

### Example:

Examine whether the vectors  $\vec{a} = (2, -3, 1)$  and  $\vec{b} = (3, 1, 0)$  are perpendicular to each other.

### Solution:

Two vectors are perpendicular to each other if and only if scalar product of these vectors is zero. Therefore,

$$\vec{a} \circ \vec{b} = 6 - 3 + 0 = 3$$

Answer: The vectors are perpendicular to each other.

### Example:

Determine area of a triangle that is spanned by vectors  $\vec{a} = (-3, 2, -2)$  i  $\vec{b} = (1, -4, 1)$ .

Solution:

$$P_{\Delta} = \frac{1}{2} \left| \vec{a} \times \vec{b} \right|$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -3 & 2 & -2 \\ 1 & -4 & 1 \end{vmatrix} = -6\vec{i} + \vec{j} + 10\vec{k}$$



Innovative Approach in Mathematical Education for Maritime Students 2019-1-HR01-KA203-061000

$$P_{\Delta} = \frac{1}{2} \left| \vec{a} \times \vec{b} \right| = \frac{1}{2} \left| -6\vec{i} + \vec{j} + 10\vec{k} \right| = \frac{1}{2}\sqrt{36 + 1 + 100} = \frac{1}{2}\sqrt{137}$$

Example:

Given are points A(1,2,1); B(3,-2,1); C(1,4,3) i D(5,0,5). Determine volumen V of the parallelopiped determined by vectors  $\overrightarrow{AB}, \overrightarrow{AC} i \overrightarrow{AD}$ .

Solution:

$$\vec{a} = \vec{A}\vec{B} = (2, -4, 0)$$
  
$$\vec{b} = \vec{A}\vec{C} = (0, 2, 2)$$
  
$$\vec{c} = \vec{A}\vec{D} = (4, -2, 4)$$
  
$$(\vec{a} \times \vec{b}) \circ \vec{c} = \begin{vmatrix} 2 & -4 & 0 \\ 0 & 2 & 2 \\ 4 & -2 & 4 \end{vmatrix} = 8$$

 $V = |(\vec{a} \times \vec{b}) \circ \vec{c}| = |8| = 8$