4.5 Performing Operations in Component Form

Scalar multiplication and Vector addition

- Scalar multiplication:

$$
\lambda \cdot \vec{a}=\left(\lambda \cdot a_{x,}, \lambda \cdot a_{y,}, \lambda \cdot a_{z,}\right)
$$

- Vector addition:

$$
\vec{a}+\vec{b}=\left(a_{x}, a_{y}, a_{z}\right)+\left(b_{x}, b_{y}, b_{z}\right)=\left(a_{x,}+b_{x,}, a_{y}+b_{y,}, a_{z}+b_{z}\right)
$$

Example:

Let \vec{a} be the vector with initial point $(1,1)$ and terminal point $(3,-4)$, and let $\vec{b}=(-1,4)$.
a) Express \vec{a} in component form and find $\|\vec{a}\|$. Then, using algebra, find
b) $\quad \vec{a}+\vec{b}$
c) $3 \vec{b}$
d) $\overrightarrow{2 a}-\vec{b}$.

Solution:
a) $\vec{a}=(3-1,-4-1)=(2,-5)$
$\vec{a}+\vec{b}=(2,-5)+(-1,4)=(2+(-1),-5+4)=(1,-1)$ (orange vector on Figure 4.20)
b) $3 \vec{b}=3(-1,4)=(3 \cdot(-1), 3 \cdot 4)=(-3,12)$
c) $\overrightarrow{2 a}-\vec{b}=2 \cdot(2,-5)-(-1,4)=(4,-10)+(1,-4)=(4+1,-10-4)=(5,-14)$

Figure 4.20 The component form of the vector $\overrightarrow{\boldsymbol{a}}$ is $\overrightarrow{\boldsymbol{a}}=(\mathbf{2}, \mathbf{- 5})$. In component form, $\overrightarrow{\boldsymbol{a}}+$ $\vec{b}=(1,-1)$

Dot or scalar product of vectors \vec{a} and \vec{b} is equal to:

$$
\vec{a} \circ \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z} .
$$

The result from scalar product of two vectors is always a real number.
If the angle between two verctors \vec{a} and \vec{b} is 90°, then $\vec{a} \cdot \vec{b}=0$, because $\cos \left(90^{\circ}\right)=0$.
Angle between vectors \vec{a} and \vec{b} is calculated according to the formula for dot product:

$$
\cos \Varangle(\vec{a}, \vec{b})=\frac{\vec{a} \circ \vec{b}}{|\vec{a}||\vec{b}|}=\frac{a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}}{\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}} \cdot \sqrt{b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}} .
$$

Cross or vector product of vectors \vec{a} and \vec{b} can be calculated according to the formula

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| .
$$

The result from cross or vector product of two vectors is always a vector.
Mixed triple product is calculated according to the formula:

$$
(\vec{a} \times \vec{b}) \circ \vec{c}=\left|\begin{array}{ccc}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right|
$$

Example.

Let are given the vectors: $\vec{a}=(1,0,1)$ and $\vec{b}=(2,-2,2)$. Determine the angle $\varphi=\Varangle(\vec{a}, \vec{b})$.

Solution:

$$
\begin{gathered}
\cos \varphi=\frac{(1,0,1) \cdot(2,-2,2)}{\sqrt{1^{2}+0^{2}+1^{2}} \cdot \sqrt{2^{2}+(-2)^{2}+2^{2}}}=\frac{2+0+2}{\sqrt{2} \cdot \sqrt{12}}=\frac{4}{2 \sqrt{6}} \\
\varphi=35^{\circ} 15^{\prime} 52^{\prime \prime}
\end{gathered}
$$

Example.

Examine whether the vectors $\vec{a}=(2,-3,1)$ and $\vec{b}=(3,1,0)$ are perpendicular to each other.

Solution:

Two vectors are perpendicular to each other if and only if scalar product of these vectors is zero. Therefore,

$$
\vec{a} \circ \vec{b}=6-3+0=3
$$

Answer: The vectors are perpendicular to each other.

Example.

Determine area of a triangle that is spanned by vectors $\vec{a}=(-3,2,-2)$ i $\vec{b}=(1,-4,1)$.

Solution:

$$
\begin{aligned}
& P_{\Delta}=\frac{1}{2}|\vec{a} \times \vec{b}| \\
& \vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-3 & 2 & -2 \\
1 & -4 & 1
\end{array}\right|=-6 \vec{\imath}+\vec{\jmath}+10 \vec{k}
\end{aligned}
$$

$$
P_{\Delta}=\frac{1}{2}|\vec{a} \times \vec{b}|=\frac{1}{2}|-6 \vec{i}+\vec{j}+10 \vec{k}|=\frac{1}{2} \sqrt{36+1+100}=\frac{1}{2} \sqrt{137}
$$

Example.

Given are points $A(1,2,1) ; B(3,-2,1) ; C(1,4,3) i D(5,0,5)$. Determine volumen \vee of the parallelopiped determined by vectors $\overrightarrow{A B}, \overrightarrow{A C} i \overrightarrow{A D}$.

Solution:

$\vec{a}=\overrightarrow{A B}=(2,-4,0)$
$\vec{b}=\overrightarrow{A C}=(0,2,2)$
$\vec{c}=\overrightarrow{A D}=(4,-2,4)$

$$
(\vec{a} \times \vec{b}) \circ \overrightarrow{\boldsymbol{c}}=\left|\begin{array}{ccc}
2 & -4 & 0 \\
0 & 2 & 2 \\
4 & -2 & 4
\end{array}\right|=8
$$

$V=|(\vec{a} \times \vec{b}) \circ \vec{c}|=|8|=8$

