COMPLEX NUMBERS

1. The imaginary unit i

The imaginary unit is defined as

$$
i=\sqrt{-1}, \quad \text { where } \mathrm{i}^{2}=-1 .
$$

2. Complex Numbers and Imaginary Numbers

The set of all numbers in the form $a+b i$ with real numbers a and b and i the imaginary unit, is called the set of complex numbers.

The real number a is called the real part and the real number b is called the imaginary part of the complex number $a+b i$.

If $b \neq 0$ then the complex number is called an imaginary number. An imaginary number in the form bi is called a pure imaginary number.

3. Operations with Complex Numbers

1) $(a+b i)+(c+d i)=a+b i+c+d i=(a+c)+(b+d) i$
2) $(a+b i)-(c+d i)=a+b i-c-d i=(a-c)+(b-d) i$
3) $(a+b i)(c+d i)=a c+a d i+b c i+b d i^{2}=a c+a d i+b c i-b d=(a c-b d)+(a d+b c) i$

EXAMPLE 1:

1) $(2+5 i)+(3-9 i)=2+5 i+3-9 i=(2+3 i)+(5 i-9 i)=5-4 i$
2) $(1+3 i)-(7-2 i)=1+3 i-7+2 i=(1-7)+(3 i+2 i)=-6+5 i$
3) $(1-2 i)(3+4 i)=3+4 i-6 i-8 i^{2}=3+4 i-6 i+8=11-2 i$

4. Complex Conjugates and Division

The complex conjugate of the number $a+b i$ is

$$
a-b i
$$

and the complex conjugate of $a-b i$ is

$$
a+b i
$$

The multiplication of complex conjugates gives a real number.

$$
\begin{aligned}
& (a+b i)(a-b i)=a^{2}+b^{2} \\
& (a-b i)(a+b i)=a^{2}+b^{2}
\end{aligned}
$$

Complex conjugates are used to divide complex numbers. The goal of the division procedure is to obtain a real number in the denominator.
This real number becomes the denominator of a and b in the quotient $a+b i$.
By multiplying the numerator and the denominator of the division by the complex conjugate of the denominator, you will obtain this real number in the denominator.

$$
\begin{gathered}
\frac{a+b i}{c+d i}=\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)}=\frac{a c-a d i+b c i-b d i^{2}}{c^{2}-d^{2} i^{2}}=\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}} \\
=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i
\end{gathered}
$$

$c^{2}+d^{2} \neq 0$

EXAMPLE 2:

1) $\frac{2-5 i}{3+i}=\frac{(2-5 i)(3-i)}{(3+i)(3-i)}=\frac{6-2 i-15 i+5 i^{2}}{9-i^{2}}=\frac{6-2 i-15 i-5}{9+1}=\frac{1-17 i}{10}$
2) $\frac{1+4 i}{5-2 i}=\frac{(1+4 i)(5+2 i)}{(5-2 i)(5+2 i)}=\frac{5+2 i+20 i+8 i^{2}}{25-4 i^{2}}=\frac{5+2 i+20 i-8}{25+4}=\frac{-3+22 i}{29}$
