

5. Polar Form of a Complex Number

The complex number z = a + bi is written in **polar form** as

$$z = r(\cos \varphi + i \sin \varphi)$$

where $a = r \cos \varphi$, $b = r \sin \varphi$, $r = \sqrt{a^2 + b^2}$ and

$$\varphi = \begin{cases} 2\pi - \arctan\left|\frac{b}{a}\right|, & if \ a > 0, \ b < 0 \\ \arctan\left|\frac{b}{a}\right|, & if \ a > 0, \ b \ge 0 \\ \pi - \arctan\frac{b}{a}, & if \ a < 0, \ b > 0 \\ \pi + \arctan\frac{b}{a}, & if \ a < 0, \ b < 0 \\ \frac{\pi}{2}, & if \ b > 0, \ a = 0 \\ \frac{3\pi}{2}, & if \ b < 0, \ a = 0 \end{cases}$$

The value of r is called the modulus of the complex number and the angle ϕ is called the argument of the complex number z with $0 \le \varphi < 2\pi$.

EXAMPLE 3: Write $z = 1 + \sqrt{3}i$ in polar form. a = 1, $b = \sqrt{3}$

1)
$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = \sqrt{4} = 2$$

2)
$$a > 0$$
, $b > 0$, $\varphi = \arctan \left| \frac{b}{a} \right| = \arctan \left| \frac{\sqrt{3}}{1} \right| = \frac{\pi}{3}$

3)
$$z = 2(\cos{\frac{\pi}{3}} + i\sin{\frac{\pi}{3}})$$

6. Product of Two Complex Numbers in Polar Form

Let $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ and $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ be two complex numbers in polar form.

Their product, z_1z_2 is

$$z_1 z_2 = r_1 r_2 [\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)]$$

To multiply two complex numbers, multiply moduli and add arguments.

EXAMPLE 4: Find
$$z_1 z_2$$
, if $z_1 = 4(\cos 30^\circ + i \sin 30^\circ)$ and $z_2 = 2(\cos 60^\circ + i \sin 60^\circ)$.
$$z_1 z_2 = 4(\cos 30^\circ + i \sin 30^\circ) \cdot 2(\cos 60^\circ + i \sin 60^\circ)$$
$$= 4 \cdot 2[\cos(30^\circ + 60^\circ) + i \sin(30^\circ + 60^\circ)] = 8(\cos 90^\circ + i \sin 90^\circ)$$

7. Quotient of Two Complex Numbers in Polar Form

Let $z_1 = r_1(\cos \varphi_1 + i \sin \varphi_1)$ and $z_2 = r_2(\cos \varphi_2 + i \sin \varphi_2)$ be two complex numbers in polar form.

Their quotient,
$$\frac{z_1}{z_2}$$
 is $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)].$

To divide two complex numbers, divide moduli and subtract arguments.

EXAMPLE 5: Find
$$\frac{z_1}{z_2}$$
, if $z_1 = 10(\cos 58^\circ + i \sin 58^\circ)$ and $z_2 = 2(\cos 30^\circ + i \sin 30^\circ)$.
$$\frac{z_1}{z_2} = \frac{10(\cos 58^\circ + i \sin 58^\circ)}{2(\cos 30^\circ + i \sin 30^\circ)} = 5[\cos(58^\circ - 30^\circ) + i \sin(58^\circ - 30^\circ)]$$

$$= 5(\cos 28^\circ + i \sin 28^\circ)$$