Introduction to Indefinite Integrals

1. Conceptions of the antiderivative and definition of the indefinite integral

In the previous chapters we learned the differentiation of continuous functions. If function $F(x)$ is given, its derivative is function $f(x)$

$$
F^{\prime}(x)=f(x)
$$

or in the form of differentials

$$
\frac{d(F(x)+C)}{d x}=f(x)
$$

We are interested in the reverse procedure: what function have we differentiated to get function $f(x)$? For instance, $f(x)=\cos x$.

According to the derivation formulas

$$
\sin ^{\prime} x=\cos x
$$

Taking into account that the derivative of the constant number is zero

$$
C^{\prime}=0
$$

we can determine several functions whose derivative is cosine function

$$
(\sin x+1)^{\prime}=\cos x ; \quad(\sin x-1.5)^{\prime}=\cos x ;(\sin x+3)^{\prime}=\cos x
$$

We can conclude that all sinus functions plus an arbitrary constant number are the prime functions of the cosine. We determine the family of prime functions of function $\cos x$ for all real numbers C

$$
\cos x=(\sin x+C), C \in R
$$

Definition 1.1 For any given function $f(x)$, function $F(x)$ is the prime function or antiderivative of $\boldsymbol{f}(\boldsymbol{x})$ if $F^{\prime}(x)=f(x)$.

The process of finding antiderivatives is the reverse procedure of derivation. We call this process integration.

Definition 1.2 The Indefinite integral of a given function $f(x)$ is the set of all antiderivatives $F(x)+C$ of the function $f(x)$ and it is denoted

$$
\int f(x) d x=F(x)+C
$$

where
the sign \int is called the integral symbol,
$f(x)$ is called the integrand,
x is called the integration variable,
C is called the integration constant.

The above-mentioned example can be written

$$
\int \cos x d x=\sin x+C
$$

2. Geometric interpretation of the indefinite integral

Knowing the geometric meaning of the derivative of a function, the given function $f(x)$ expresses the rate of change of some prime function. Geometric solution of integration of $f(x)$ presents a set of graphs that completely cover the plane. For instance, representatives of the whole family of antiderivatives $F(x)=e^{x}+C$ are shown in figure 2.1.

Figure 2.1 The family of antiderivatives $F(x)=e^{x}+C$

We can get one definite function of the set of answers if some initial condition is given: that is, we have the coordinates of the point belonging to the curve.

Example 2.1 Find function $\omega(x)$ whose rate of change is $\omega^{\prime}(x)=\cos x$ and the point $(0,2)$ belongs to the graph of the function.

Solution We will solve this problem in two steps.

Step 1. Find antiderivatives of the function $\cos x$

$$
\omega(x)=\int \cos x d x=\sin x+C
$$

Step 2. Calculate the definite value of constant C according to the value of the function at the point $(0,2)$

$$
\begin{gathered}
\omega(0)=\sin 0+C=C \\
\omega(0)=2 ; C=2
\end{gathered}
$$

Answer $\omega(x)=\sin x+2$.

The graph of this function belongs to the family of functions $\omega(x)=\sin x+C$. The y-intercept is the point $(0,2)$ where the graph of function $\omega(x)=\sin x+2$ crosses the y-axis (see Figure 2.2).

Figure 2.2 The family of functions $\omega(x)=\sin x+C$

An indefinite integral can be used to express the functional relations of physical processes.

Example 2.2 A flare is ejected vertically upwards from the ground at $15 \mathrm{~m} / \mathrm{s}$. Find the height of the flare after 2.5 s .

Comment In the solution of this problem we suppose that it is not very hard to apply differentiation to find the function that gives the derivative $-9.8 t+15$

Solution The velocity of a given object can be expressed in terms of time according to gravity

$$
v(t)=-9.8 t+C
$$

At the initial moment the velocity is $15 \mathrm{~m} / \mathrm{s}(t=0)$. We calculate $C=15$.

The function of velocity in the given case is

$$
v(t)=-9.8 t+15
$$

To find the displacement $s(t)$ of the flare we integrate the function of velocity

$$
\begin{gathered}
s(t)=\int v(t) d t=\int(-9.8 t+15) d t= \\
=-4.9 t^{2}+15 t+C
\end{gathered}
$$

At the initial position $t=0, s=0$ therefore $C=0$. We calculate the height of the flare after 2.5 seconds

$$
s(2.5)=-4.92 .5^{2}+15 \cdot 2.5=6.875 \mathrm{~m}
$$

3. Uniqueness of antiderivatives

A question arises when searching for the antiderivatives of the given function $f(x)$. How much these antiderivatives differ from one another? The following theorem states:

Theorem 2.1 If functions $F_{1}(x)$ and $F_{2}(x)$ are two different antiderivatives of the function $f(x)$ they differ only by a constant number.

It is given $\left[F_{1}(x)\right]^{\prime}=f(x)$ and $\left[F_{2}(x)\right]^{\prime}=f(x)$. Then the difference is

$$
\left[F_{1}(x)\right]^{\prime}-\left[F_{2}(x)\right]^{\prime}=0 \text { or }\left[F_{1}(x)-F_{2}(x)\right]^{\prime}=0 .
$$

We conclude that $F_{1}(x)-F_{2}(x)=C$.

4. Exercises

Using the list of elementary derivatives, find the antiderivatives $f(x)$ of the given functions $f^{\prime}(x)$ according to the initial conditions. Construct the graph of function $f(x)$.

1. $f^{\prime}(x)=3 x^{2} ; f(0)=-1$
2. $f^{\prime}(x)=e^{x} ; \quad f(1)=e$
3. $f^{\prime}(x)=\frac{1}{2 x} ; \quad f(1)=1.5$
4. $f^{\prime}(x)=2 \sin x ; \quad f\left(\frac{\pi}{3}\right)=-0.75$
5. $f^{\prime}(x)=4 x-3 ; \quad f(1)=1$
6. Car starts form the origin and has acceleration $(t)=2 t-5 \mathrm{~m} / \mathrm{s}^{2}$. Find the function of velocity of the car!

6. Solutions

Solution of exercise 1 We have the formula

$$
\left(x^{n}\right)^{\prime}=n x^{n-1}
$$

From the given $f^{\prime}(x)=3 x^{2}$ we can decide that $n=3$ and we find $\left(x^{3}\right)^{\prime}=3 x^{2}$.
Using integral we get the set of answers

$$
\int f^{\prime}(x) d x=\int 3 x^{2} d x=x^{3}+C
$$

Applying initial condition $x=0 ; y=1$

$$
0+C=1 ; \quad C=1
$$

Answer

$$
f(x)=x^{3}+1
$$

Figure 4.1 Function $f(x)=x^{3}+1$ passing through the point $(0 ; 1)$.

Solution of exercise 2 We have the formula

$$
\left(e^{x}\right)^{\prime}=e^{x}
$$

Using integral we get the set of answers

$$
\int e^{x} d x=e^{x}+C
$$

Applying initial condition $x=1 ; y=e$

$$
e^{1}+C=e ; \quad C=0
$$

Answer

Figure 4.2 Function $f(x)=e^{x}$ passing through the point (1 ; e).

Solution of exercise 3 We have the formulas

$$
(\ln x)^{\prime}=\frac{1}{x} \text { and }(a f(x))^{\prime}=a(f(x))^{\prime}, \text { where } a \text { is a constant. }
$$

Then

$$
\left(\frac{1}{2} \ln x\right)^{\prime}=\frac{1}{2}(\ln x)^{\prime}=\frac{1}{2} \cdot \frac{1}{x}
$$

Using integral

$$
\int \frac{1}{2 x} d x=\frac{\ln x}{2}+C
$$

Applying initial condition $x=1 ; y=1.5$

$$
\frac{\ln 1}{2}+C=0+C=1.5 ; \quad C=1.5
$$

Answer

$$
f(x)=\frac{\ln x}{2}+1.5
$$

Figure 4.3 Function $f(x)=\frac{\ln x}{2}+1.5$ passing through the point $(1 ; 1.5)$.

Solution of exercise 4 We have the formula

$$
(\cos x)^{\prime}=-\sin x
$$

Using integral we get

$$
\int 2 \sin x d x=2 \int \sin x d x=-2 \cos x+C
$$

Applying initial condition $x=\frac{\pi}{3} ; y=-0.75$

$$
-2 \cos \frac{\pi}{3}+C=-2 \cdot \frac{1}{2}+C=-0.75 ; \quad C=0.25
$$

Answer

$$
f(x)=-2 \cos x+0.25
$$

Figure 4.4 Function $f(x)=-2 \cos x+0.25$ passing through the point $\left(\frac{\pi}{3},-0.75\right)$.

Solution of exercise 5 We know that

$$
\left(x^{2}\right)^{\prime}=2 x ; \quad(3 x)^{\prime}=3
$$

and

$$
\left(2 x^{2}-3 x\right)^{\prime}=2\left(x^{2}\right)^{\prime}-(3 x)^{\prime}=4 x-3
$$

Using integral we get

$$
\int(4 x-3) d x=2 x^{2}-3 x+C
$$

Applying initial condition $x=1 ; y=1$

$$
2-3+C=1 ; \quad C=2
$$

Answer

$$
f(x)=2 x^{2}-3 x+2
$$

Figure 4.5 Function $f(x)=2 x^{2}-3 x+2$
passing through the point $(1 ; 1)$.
6. Car starts form the origin and has the acceleration $(t)=2 t-5 \mathrm{~m} / \mathrm{s}^{2}$. Find the function of velocity of the car!
Solution
Velocity can be determined

$$
v(t)=\int a(t) d t
$$

Applying the formula of differentiation of power function, we can detect that expression $2 t-5$ can be derived from the function t^{2}, and 5 from $5 t$. Therefore, the antiderivative should be

$$
F(x)=t^{2}-5 t
$$

Generally, $v(t)=t^{2}-5 t+C$.
At the start $t=0, v(0)=0$, therefore $C=0$. Therefore, the function of velocity is

$$
v(t)=t^{2}-5 t
$$

This equation helps to detect the velocity of the car after a time moment, for instance, after 10 seconds

$$
v(10)=100-50=50 \mathrm{~m}
$$

