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6.5. Derivation of the parametrically given function 
 

The trail of a material point T moving across the plane is the curve, for example: line, parabola, 

ellipse, hyperbola, cosine wave, etc. Each point T can be observed as a vessel sailing along a 

path (curve). When describing such a movement, it is necessary to know the point coordinates 

as the function of time, at each moment t. If we mark ( )tx =  and ( )ty =  as the coordinates 

of the point T where   and   are the real functions determined at the interval  I  during 

which the movement occurs, it is clear that   and   are differentiable functions, because 

the speed is given by ( ) ( )  ( ) 22
tttv  += . Hence, when time t describes the interval RI 

, then the point T ( ) ( )( )tt  ,  passes at least once through each point of the set, that is 

( ) ( )( ) ItttK = :, . 

Parametric equations of the curve (t is called the parameter) are expressed as:  

    
( )

( )
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Figure 6.3 

If  is strictly monotone on the interval I (we know that there is an inverse function ( )xt 1−= ), 

then, by replacing the variable t by ( )x1−  we get y = (t) =  -1(x) = f (x). 

 

Applying the chain rule follows: 

 ( ) ( ) ( )  ( )  ( )
( )0

00

1

0

1

00

1

t
txxxfxy





=== −−  , that is ( )

( )
( )0

0
0

t

t
xf








= . 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

 

 

22 
 
 
 

We can use a simpler way: 

 ( ) ( )
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dt
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dy
xfxy
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It is easily proven that:   
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Example 1  

Find the derivative of the function f(x, y) at the point x0 = 3, which is a parametrically given by 

formulas:  
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2 1x t

y t

= −


=
 

Solution: 

First we calculate 0t  with the corresponding value 30 =x . From 
2

1
12

+
=−=

x
ttx , so that 

30 =x ; 0t = 2
2

13
=

+ . 

Now, let us find ( )t  and ( )t  : 

( )t = ( ) 2= tx  and ( ) ( ) 23ttyt == . 

By using the formula, it follows that ( )0xf  =
( )
( )0
0

t

t








, that is: ( ) 6
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t
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Example 2  

Find ( )xf   and derivative of the second order ( )xf   for the function ( )xfy = , which is 

arametrically given by formulas: 
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Solution: 

( )xy =
( )
( ) tsintcos

tcostsin

tsinetcose
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Exercise 6.8 
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Solution: 
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Exercises 6.9 

Find the coefficient of the tangent line to the graph of a function that is parametrically given: 
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Solution: 

As ( )ty =
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It follows that ( )xy =
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Exercise 6.10 

Find ( )xy  for the parametrically given function: 

( )

( )












+
=

+
=

.
t

t
arcsinty

,
t

arccostx

2

2

1

1

1

 

Solution: 

Since:  
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We obtain ( )
( )
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Exercises 6.11 

Find derivative of the second order ( )xy  : 

(1.) 
( ) ( )

( ) ( )
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Solution: 

(1.) ( )tx = ( )  tsinattsinttcostcosa =−−− , 

( )ty =   tcosattcosttsintsina =++− . 

So that ( )xy =
( )

( )
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cot
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y t at t
t

x t at t
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. Cotangent t follows that: 
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(2.) ( )tx = ( )tsintcosa −23 , 
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So that ( )
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Tangent t follows that  
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Exercise 6.12 

Prove that the function ( )xfy = , given parametrically 

( )
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Solution: 

y  =
( )
( )

t
t

tt

tx

ty

dx

dy
=

+

+
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62 2

. 

If y   is inserted into the equation ( ) ( ) 02
23

=−+ yyy , we obtain ( ) 022 3223 +−+ tttt  

  


