6.5. Derivation of the parametrically given function

The trail of a material point T moving across the plane is the curve, for example: line, parabola, ellipse, hyperbola, cosine wave, etc. Each point T can be observed as a vessel sailing along a path (curve). When describing such a movement, it is necessary to know the point coordinates as the function of time, at each moment t. If we mark $x=\varphi(t)$ and $y=\psi(t)$ as the coordinates of the point T where φ and ψ are the real functions determined at the interval $/$ during which the movement occurs, it is clear that φ and ψ are differentiable functions, because the speed is given by $v(t)=\sqrt{\left[\varphi^{\prime}(t)\right]^{2}+\left[\psi^{\prime}(t)\right]^{2}}$. Hence, when time t describes the interval $I \subseteq R$, then the point $T(\varphi(t), \psi(t))$ passes at least once through each point of the set, that is $K=\{(\varphi(t), \psi(t)): t \in I\}$.

Parametric equations of the curve (t is called the parameter) are expressed as:

$$
\left\{\begin{array}{l}
x=\varphi(t) \\
y=\psi(t), \quad t \in I
\end{array}\right.
$$

Figure 6.3
If φ is strictly monotone on the interval I (we know that there is an inverse function $t=\varphi^{-1}(x)$), then, by replacing the variable t by $\varphi^{-1}(x)$ we get $y=\psi(t)=\psi\left[\varphi^{-1}(x)\right]=f(x)$.

Applying the chain rule follows:

$$
y^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=\psi^{\prime}\left[\varphi^{-1}\left(x_{0}\right)\right] \cdot\left[\varphi^{-1}\left(x_{0}\right)\right]^{\prime}=\psi^{\prime}\left(t_{0}\right) \cdot \frac{1}{\varphi^{\prime}\left(t_{0}\right)} \text {, that is } f^{\prime}\left(x_{0}\right)=\frac{\psi^{\prime}\left(t_{0}\right)}{\varphi^{\prime}\left(t_{0}\right)}
$$

We can use a simpler way:

$$
y^{\prime}(x)=f^{\prime}(x)=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{y^{\prime}(t)}{x^{\prime}(t)}
$$

It is easily proven that:

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{\varphi^{\prime}(t) \cdot \psi^{\prime \prime}(t)-\varphi^{\prime \prime}(t) \cdot \psi^{\prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} \Rightarrow \\
& y^{\prime \prime}(x)=f^{\prime \prime}(x)=\frac{x^{\prime}(t) \cdot y^{\prime \prime}(t)-x^{\prime \prime}(t) \cdot y^{\prime}(t)}{\left[x^{\prime}(t)\right]^{3}} .
\end{aligned}
$$

Example 1

Find the derivative of the function $f(x, y)$ at the point $x_{0}=3$, which is a parametrically given by formulas:

$$
\left\{\begin{array}{l}
x=2 t-1 \\
y=t^{3}
\end{array}\right.
$$

Solution:

First we calculate t_{0} with the corresponding value $x_{0}=3$. From $x=2 t-1 \Rightarrow t=\frac{x+1}{2}$, so that $x_{0}=3 ; t_{0}=\frac{3+1}{2}=2$.

Now, let us find $\varphi^{\prime}(t)$ and $\psi^{\prime}(t)$:

$$
\varphi^{\prime}(t)=x^{\prime}(t)=2 \text { and } \psi^{\prime}(t)=y^{\prime}(t)=3 t^{2} .
$$

By using the formula, it follows that $f^{\prime}\left(x_{0}\right)=\frac{\psi^{\prime}\left(t_{0}\right)}{\varphi^{\prime}\left(t_{0}\right)}$, that is: $f^{\prime}(3)=\left.\frac{3 t_{0}^{2}}{2}\right|_{t_{0}=2}=6$.

Example 2

Find $f^{\prime}(x)$ and derivative of the second order $f^{\prime \prime}(x)$ for the function $y=f(x)$, which is arametrically given by formulas:

$$
\left\{\begin{array}{l}
x=e^{t} \cos t \\
y=e^{t} \sin t
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
y^{\prime}(x)= & \frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{e^{t} \sin t+e^{t} \cos t}{e^{t} \cos t-e^{t} \sin t}=\frac{\sin t+\cos t}{\cos t-\sin t} \\
y^{\prime \prime}(x)= & \frac{x^{\prime}(t) \cdot y^{\prime \prime}(t)-x^{\prime \prime}(t) \cdot y^{\prime}(t)}{\left[x^{\prime}(t)\right]^{3}}= \\
= & \frac{\left(e^{t} \cos t-e^{t} \sin t\right)\left(e^{t} \sin t+e^{t} \cos t+e^{t} \cos t-e^{t} \sin t\right)}{\left(e^{t} \cos t-e^{t} \sin t\right)^{3}}- \\
& -\frac{\left(e^{t} \cos t-e^{t} \sin t-e^{t} \sin t-e^{t} \cos t\right)\left(e^{t} \sin t+e^{t} \cos t\right)}{\left(e^{t} \cos t-e^{t} \sin t\right)^{3}}= \\
= & \frac{e^{t}(\cos t-\sin t) 2 e^{t} \cos t+2 e^{t} \sin t \cdot e^{t}(\sin t+\cos t)}{\left(e^{t}\right)^{3}(\cos t-\sin t)^{3}}= \\
= & \frac{2 e^{2 t}\left[\cos ^{2} t-\sin t \cos t+\sin 22 t \sin t \cos t\right]}{e^{2 t} \cdot e^{t}\left(\cos t-\sin ^{2}\right)^{3}}=\frac{2}{e^{t}(\cos t-\sin t)^{3}} .
\end{aligned}
$$

Exercise 6.8

Find $y^{\prime}(x)$ if $\left\{\begin{array}{l}x(t)=a\left(\ln \tan \frac{t}{2}+\cos t-\sin t\right), \\ y(t)=a(\sin t+\cos t) .\end{array}\right.$

Solution:

$$
\begin{aligned}
& y^{\prime}(x)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{a(\cos t-\sin t)}{a\left(\frac{1}{\left.\operatorname{tg} \frac{t}{2} \cdot \frac{1}{\cos ^{2} \frac{t}{2}} \cdot \frac{1}{2}-\sin t-\cos t\right)}=\frac{\cos t-\sin t}{\left(\frac{1}{\sin t}-\sin t-\cos t\right)}\right.}= \\
& =\frac{\sin t(\cos t-\sin t)}{1-\sin ^{2} t-\sin t \cos t}=\frac{\sin t(\cos t-\sin t)}{\cos ^{2} t-\sin t \cos t}=\frac{\sin t(\cos t-\sin t)}{\cos t(\cos t-\sin t)}=\operatorname{tg} t .
\end{aligned}
$$

Exercises 6.9

Find the coefficient of the tangent line to the graph of a function that is parametrically given:

$$
\left\{\begin{array}{c}
x(t)=t \ln t \\
y(t)=\frac{\ln t}{t}
\end{array}\right.
$$

at the point $t_{0}=1$.

Solution:

As $y^{\prime}(t)=\frac{\frac{1}{t} \cdot t-\ln t}{t^{2}}=\frac{1-\ln t}{t^{2}}$, and $x^{\prime}(t)=\ln t+1$,
It follows that $y^{\prime}(x)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{1-\ln t}{t^{2}(\ln t+1)}$, so that

$$
k_{t}=\left.y^{\prime}(x)\right|_{t_{0}=1}=\frac{1-\ln 1}{1^{2}(\ln 1+1)}=1 .
$$

Exercise 6.10

Find $y^{\prime}(x)$ for the parametrically given function:

$$
\left\{\begin{array}{l}
x(t)=\arccos \frac{1}{\sqrt{1+t^{2}}} \\
y(t)=\arcsin \frac{t}{\sqrt{1+t^{2}}}
\end{array}\right.
$$

Solution:

Since:

$$
\begin{aligned}
& y^{\prime}(t)=\frac{1}{\sqrt{1-\frac{t^{2}}{1+t^{2}}}} \cdot \frac{\sqrt{1+t^{2}}-t \cdot \frac{t}{\sqrt{1+t^{2}}}}{1+t^{2}}=\frac{\sqrt{1+t^{2}}\left(1+t^{2}-t^{2}\right)}{\left(1+t^{2}\right)^{\frac{3}{2}}}=\frac{1}{1+t^{2}}, \\
& x^{\prime}(t)=-\frac{1}{\sqrt{1-\frac{1}{1+t^{2}}}} \cdot \frac{-\frac{t}{\sqrt{1+t^{2}}}}{1+t^{2}}=\frac{\sqrt{1+t^{2}}}{\sqrt{1+t^{2}-1}} \cdot \frac{t}{\left(1+t^{2}\right) \sqrt{1+t^{2}}}=\frac{t}{|t| \cdot\left(1+t^{2}\right)} .
\end{aligned}
$$

We obtain $\quad y^{\prime}(x)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{\frac{1}{1+t^{2}}}{\frac{t}{|t|} \frac{1}{1+t^{2}}}=\frac{|t|}{t}=\left\{\begin{array}{cc}1, & t>0 \\ -1, & t<0\end{array}\right.$.

Exercises 6.11

Find derivative of the second order $y^{\prime \prime}(x)$:
(1.) $\left\{\begin{array}{l}x(t)=a(\sin t-t \cos t), \\ y(t)=a(\cos t+t \sin t),\end{array}\right.$
(2.) $\left\{\begin{array}{l}x(t)=a \cos ^{3} t, \\ y(t)=a \sin ^{3} t .\end{array}\right.$

Solution:

(1.) $x^{\prime}(t)=a[\cos t-\cos t-t(-\sin t)]=a t \sin t$,

$$
y^{\prime}(t)=a[-\sin t+\sin t+t \cos t]=a t \cos t .
$$

So that $y^{\prime}(x)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{a t \cos t}{a t \sin t}=\cot t$. Cotangent t follows that:

$$
y^{\prime \prime}(x)=\frac{\frac{d}{d t}\left[y^{\prime}(x)\right]}{x^{\prime}(t)}=\frac{-\frac{1}{\sin ^{2} t}}{\text { at } \sin t}=-\frac{1}{\text { at } \sin ^{3} t} .
$$

(2.) $x^{\prime}(t)=3 a \cos ^{2} t(-\sin t)$,

$$
y^{\prime}(t)=3 a \sin ^{2} t(\cos t) .
$$

So that $y^{\prime}(x)=\frac{y^{\prime}(t)}{x^{\prime}(t)}=-\frac{\sin t}{\cos t}=-\operatorname{tg} t$.
Tangent t follows that

$$
y^{\prime \prime}(x)=\frac{\frac{d}{d t}\left[y^{\prime}(x)\right]}{x^{\prime}(t)}=\frac{-\frac{1}{\cos ^{2} t}}{-3 a \cos ^{2} t \sin t}=\frac{1}{3 a \cos ^{4} t \sin t} .
$$

Exercise 6.12

Prove that the function $y=f(x)$, given parametrically

$$
\left\{\begin{array}{l}
x(t)=2 t+3 t^{2} \\
y(t)=t^{2}+2 t^{3}
\end{array} \text { satisfies the equation } 2\left(y^{\prime}\right)^{3}+\left(y^{\prime}\right)^{2}-y=0,\left(y^{\prime}=\frac{d y}{d x}\right) .\right.
$$

Solution:

$$
y^{\prime}=\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{2 t+6 t^{2}}{2+6 t}=t .
$$

If y^{\prime} is inserted into the equation $2\left(y^{\prime}\right)^{3}+\left(y^{\prime}\right)^{2}-y=0$, we obtain $2 t^{3}+t^{2}-\left(t^{2}+2 t^{3}\right) \equiv 0$

