6.8. Properties of continuous real function and graph sketching

Examining the properties of a continuous real function f that is defined analytically, i.e., by a formula, consists of the following steps:

1. Area of definition (natural domain), parity and periodicity

In order to determine the natural domain D_{f} of a given function f it is necessary to know the basic elementary functions and procedures for solving equations or inequalities.

Definition (even, odd, and periodic function):

The function f is:
a) even if

$$
f(-x)=f(x) \text { for all } x \in D_{f},
$$

b) odd if

$$
f(-x)=-f(x) \text { for all } x \in D_{f},
$$

c) periodic if for some $P \neq 0$ for all $x \in D_{f}$ is:

$$
f(x+P)=f(x) .
$$

Definition (fundamental period of a function):

Suppose that the function f is periodic and q denotes the smallest positive number so that

$$
f(x+q)=f(x) \text { for all } x \in D_{f}
$$

Such a number q is called the fundamental or basic period of the periodic function f.

If the domain D_{f} is determined, we examine whether the function f is even, odd, or periodic. This is useful to know because it can significantly help in further examination of a function.
Namely, if f is an even function, then its graph is symmetric with respect to the y-axis therefore, it is sufficient to examine the function f only on the set $D_{f} \cap[0, \infty)$;
if f is an odd function, then its graph is centrally symmetric with respect to the origin, so again it is sufficient to examine the flow of the function f only on the set $D_{f} \cap[0, \infty)$;
if f is the periodic function with the fundamental period q, then it is sufficient to examine the function f only on the set $D_{f} \cap\left[-\frac{q}{2}, \frac{q}{2}\right]$.
2. \boldsymbol{x} - intercept (s) and \boldsymbol{y} - intercept

The intersection points of a graph of a function with coordinate axes are important indicators of the behaviour of a function.

Definition and finding procedure: We solve the equation $f(x)=0$.

If $x=x_{0}$ is the solution of that equation, then the point $N\left(x_{0}, 0\right)$ is called zero-point, shorter zero, or \boldsymbol{x} - intercept of the function f.
If the equation $f(x)=0$ has no solution, then the function f has no zeros.
The equation $f(x)=0$ can have multiple solutions, i.e., the function f can have multiple zeros (there may even be an infinite number of them).
If $0 \in D_{f}$, then the point $(0, f(0))$ is called y-intercept.
If $0 \notin D_{f}$, then such point does not exist.

Note: Function $y=f(x)$ can have one y - intercept at most.

3. Asymptotes

An asymptote of a function f is a line that comes arbitrarily close to the graph of f as the graph recedes indefinitely away from the origin.

Definition (asymptotes):

If $a \in \mathbb{R}$, the line $x=a$ is the right vertical asymptote of the function f if

$$
\lim _{x \rightarrow a^{+0}} f(x)=\infty \text { or } \lim _{x \rightarrow a^{+0}} f(x)=-\infty
$$

The line $x=a$ is the left vertical asymptote of the function f if

$$
\lim _{x \rightarrow a^{-0}} f(x)=\infty \text { or } \lim _{x \rightarrow a^{-0}} f(x)=-\infty
$$

The line $y=b$ is the right horizontal asymptote of the function f if

$$
\lim _{x \rightarrow \infty} f(x)=b \in \mathbb{R}
$$

The line $y=c$ is the left horizontal asymptote of the function f if

$$
\lim _{x \rightarrow-\infty} f(x)=c \in \mathbb{R}
$$

If $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=k_{1} \in \mathbb{R} \backslash\{0\}$ and $\lim _{x \rightarrow \infty}\left[f(x)-k_{1} x\right]=l_{1} \in \mathbb{R}$, then

$$
y=k_{1} x+l_{1}
$$

Is the right oblique or the slant asymptote of the function f.

If $\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=k_{2} \in \mathbb{R} \backslash\{0\}$ and $\lim _{x \rightarrow-\infty}\left[f(x)-k_{2} x\right]=l_{2} \in \mathbb{R} \backslash\{0\}$, then

$$
y=k_{2} x+l_{2}
$$

is the left oblique or slant asymptote of the function f.

Important notes:

1) The function f can have a vertical asymptote $x=a$ only if a is a point on the edge of the domain D_{f} where the function is not defined
2) The function f can have more (even infinitely many) vertical asymptotes.
3) The function f cannot have a horizontal and an oblique asymptote on the same side of the graph.
Therefore, the function f cannot have
the right horizontal and right oblique
or
the left horizontal and left oblique asymptote.
However, the function f can have
the left horizontal and right oblique
or
the right horizontal and left oblique asymptote.
4) The function f does not have to have any asymptotes.

Finding procedure: Taking into account the previous notes, all meaningful limits should be determined, and the equations of the corresponding asymptotes should be written. When drawing a graph of the function f, asymptotes are usually drawn with dashed lines.
4. Intervals of monotonicity and points of local extrema

Definition (open interval):

Open intervals (in the set \mathbb{R}) are intervals of the form:

$$
(a, b),(a, \infty) \text { or }(-\infty, b)
$$

where a and b are real numbers.

Definition (monotonic function on open interval, intervals of monotonicity):

Suppose that the function f is defined on the open interval J.
a) The function f is increasing on J if for any two points $x_{1}, x_{2} \in J$ such that $x_{1}<x_{2}$ it holds

$$
f\left(x_{1}\right) \leq f\left(x_{2}\right) .
$$

b) The function f is decreasing on J if for any two points $x_{1}, x_{2} \in J$ such that $x_{1}<x_{2}$ it holds

$$
f\left(x_{1}\right) \geq f\left(x_{2}\right) .
$$

In both cases, if f is only increasing or only decreasing on J, it is said that f is monotone on the interval J, and the interval J is called the interval of monotonicity of the function f.

Theorem (sufficient condition for monotonicity):

Suppose that f is differentiable function on the open interval J.
If $f^{\prime}(x)>0$ for all $x \in J$, then f is increasing on J.
If $f^{\prime}(x)<0$ for all $x \in J$, then f is decreasing on J.

Definition (point of local extremum):

Suppose that the function f is defined on the open interval J and that $c \in J$.
a) If exists $\varepsilon>0$ such that

$$
f(x) \leq f(c) \text { for all } x \in(c-\varepsilon, c) \cup(c, c+\varepsilon)
$$

then the function f has a local extremum (namely a local maximum) at the point c, and $M(c, f(c))$ is the point of the local maximum of the function f.
b) If exists $\varepsilon>0$ such that

$$
f(x) \geq f(c) \text { for all } x \in(c-\varepsilon, c) \cup(c, c+\varepsilon)
$$

then the function f has a local extremum (namely a local minimum) at the point c, and $m(c, f(c))$ is the point of the local minimum of the function f.

Definition (stationary point and critical point):

Let the function f be defined on the open interval J and let $c \in J$.
The point $(c, f(c))$ is a stationary point of the function f if $f^{\prime}(c)=0$.
The point $(c, f(c))$ is a critical point of the function f if $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist (in a set \mathbb{R}).

Theorem (sufficient condition for the existence of a point of local extremum):

Let the function f be defined on the open interval J and differentiable on J except eventually
at the point $c \in J$.
If exists $\varepsilon>0$ such that

$$
f^{\prime}(x)>0 \text { for all } x \in(c-\varepsilon, c) \text { and } f^{\prime}(x)<0 \text { for all } x \in(c, c+\varepsilon),
$$

then the function f has a local maximum at the point c, i.e., $M(c, f(c))$ is the point of the local maximum of the function f.
If exists $\varepsilon>0$ such that

$$
f^{\prime}(x)<0 \text { for all } x \in(c-\varepsilon, c) \text { and } f^{\prime}(x)>0 \text { for all } x \in(c, c+\varepsilon)
$$

then the function f has a local minimum at the point c, i.e., $m(c, f(c))$ is the point of the local minimum of the function f.

Definition (function that changes the sign at a point):

Let the function f be defined on the open interval J except eventually at the point $c \in J$. It is said that the function f is a function that changes the sign at a point c if exists $\varepsilon>0$ such that

$$
f(x)<0 \text { for all } x \in(c-\varepsilon, c) \text { and } f(x)>0 \text { for all } x \in(c, c+\varepsilon)
$$

or

$$
f(x)>0 \text { for all } x \in(c-\varepsilon, c) \text { and } f(x)<0 \text { for all } x \in(c, c+\varepsilon) .
$$

Finding procedure:

Firstly, the function f^{\prime} should be determined, and then the set

$$
S_{1}=\left\{x \in D_{f}: f^{\prime}(x)=0 \text { or } f^{\prime}(x) \text { does not exist }\right\} .
$$

Therefore, the natural domain $D_{f^{\prime}}$ of the function f^{\prime} should be determined, and then all possible solutions of the equation $f^{\prime}(x)=0$.

The elements of the set S_{1} together with the edges of the domain D_{f} of the function f determine the edges of the interval of monotonicity of the function f.

On each interval of monotonicity, on which the function f^{\prime} is a continuous function and has no zeros in that interval, the same procedure is applied:

1) One point of that interval is chosen and the value of the function f^{\prime} is calculated at that point.
2) If this value is positive (negative), then the function f is increasing (decreasing) on that interval.
If the function f^{\prime} is the function that changes sign at the point $c \in S_{1}$, then $(c, f(c))$ is the point of the local extremum of the function f.
The type of the extremum is determined, a point of the local maximum or local minimum, using the appropriate definition (definition of the point of local extremum).

5. Intervals of concavity and inflection points

Definition (concave function on open interval, interval of concavity):

Let us consider the function f which is defined on an open interval J.
a) The function f is concave upward on J if for any two different points $x_{1}, x_{2} \in J$ it holds

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \leq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}
$$

b) The function f is concave downward on J if for any two different points $x_{1}, x_{2} \in J$ it holds

$$
f\left(\frac{x_{1}+x_{2}}{2}\right) \geq \frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}
$$

In both cases, if f is concave upward or concave downward on J, it is said that f is concave on the interval J, and the interval J is called the interval of concavity of the function f.

The function \boldsymbol{f} is concave upward (concave downward) on an open interval \boldsymbol{J} if and only if at each point of that interval the line tangent to the graph of the function \boldsymbol{f} is below (above) the graph of the function \boldsymbol{f}.

Figure 6.7. Graph of a concave upward function on the interval

Figure 6.8. Graph of a concave downward function on the interval

Theorem (sufficient condition for concavity):

Suppose that the function f is twice differentiable on the open interval J.
If $f^{\prime \prime}(x)>0$ for all $x \in J$, then f is concave upward on J.
If $f^{\prime \prime}(x)<0$ for all $x \in J$, then f is concave downward on J.

Definition (inflection point):

Suppose that the function f is defined on the open interval J and that $c \in J$.
If exists $\varepsilon>0$ such that f is concave upward on the interval $(c-\varepsilon, c)$ and concave downward on the interval $(c, c+\varepsilon)$, or vice versa, then f has an inflection at the point c, and $I(c, f(c))$ is the inflection point of the function f.

Theorem (sufficient condition for the existence of an inflection point):
Suppose that the function f is defined on an open interval J and twice differentiable on J except eventually at the point $c \in J$. If $f^{\prime \prime}$ changes the sign at the point c, then the function f has an inflection at the point c, and $I(c, f(c))$ is the inflection point of the function f.

Finding procedure:

Firstly, the function $f^{\prime \prime}$ is determined, and then the set

$$
S_{2}=\left\{x \in D_{f}: f^{\prime \prime}(x)=0 \text { or } f^{\prime \prime}(x) \text { does not exist }\right\} .
$$

Therefore, the natural domain $D_{f^{\prime \prime}}$ of the function $f^{\prime \prime}$ should be determined, and then all possible solutions of the equation $f^{\prime \prime}(x)=0$.

The elements of the set S_{2} together with the edges of the domain D_{f} of the function f determine the edges of the intervals of concavity of the function f.

On each interval of concavity, on which the function $f^{\prime \prime}$ is a continuous function (which has no zero points on that interval), the same procedure is applied:

1) One point of that interval is chosen and the value of the function $f^{\prime \prime}$ is calculated at that point.
2) If this value is positive (negative) then the function f is concave upward (concave downward) on that interval.

If the function $f^{\prime \prime}$ changes sign at the point $c \in S_{2}$ then $I(c, f(c))$ is the inflection point of the function f.

6. Graph of the function

All obtained information about the function f through steps 1-5 should be merged into a coherent image.
Note: When drawing a graph, it is possible to detect all inconsistencies, i.e., errors in the previous calculation and correct them.

In the following examples the characteristic properties of a non-periodic function $y=f(x)$ are examined for the purpose of drawing its graph.

Example 1

$$
f(x)=\frac{16}{x^{2}(x-4)} .
$$

Solution:
The function is elementary and therefore continuous (on each point where it is defined).
The same is true for its derivatives.

1. Area of definition (natural domain), parity and periodicity

$$
D_{f}=\left\{x \in \mathbb{R}: x^{2}(x-4) \neq 0\right\}=\mathbb{R} \backslash\{0,4\}=(-\infty, 0) \cup(0,4) \cup(4, \infty)
$$

The function is neither even nor odd because the domain is not a symmetric set with respect to zero.
2. $\quad x$ - intercept(s) and \boldsymbol{y} - intercept
$f(x) \neq 0$ for all $x \in D_{f}$ so the function has no zeros.
$f(0)$ does not exist because $0 \notin D_{f}$. Therefore, the graph of the function f neither intersects nor touches the y - axis.

3. Asymptotes

Possible vertical asymptotes are lines $x=0$ and $x=4$. Namely, 0 and 4 are points on the edge of the domain D_{f} where the function is not defined.
$\lim _{x \rightarrow 0^{+0}} \frac{16}{x^{2}(x-4)}=-\infty \Rightarrow x=0$ is the right vertical asymptote.
$\lim _{x \rightarrow 0^{-0}} \frac{16}{x^{2}(x-4)}=-\infty \Rightarrow x=0$ is the left vertical asymptote.
$\lim _{x \rightarrow 4^{+0}} \frac{16}{x^{2}(x-4)}=\infty \Rightarrow x=4$ is the right vertical asymptote.
$\lim _{x \rightarrow 4^{-0}} \frac{16}{x^{2}(x-4)}=-\infty \Rightarrow x=4$ is the left vertical asymptote.

The function could have horizontal asymptotes because the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ make sense (in the domain D_{f} is possible that $x \rightarrow \infty$ and $x \rightarrow-\infty$).

$$
\lim _{x \rightarrow \infty} \frac{16}{x^{2}(x-4)}=0 \in \mathbb{R}
$$

$\Rightarrow y=0$ is the right horizontal asymptote.

$$
\lim _{x \rightarrow-\infty} \frac{16}{x^{2}(x-4)}=0 \in \mathbb{R}
$$

$\Rightarrow y=0$ is the left horizontal asymptote.

The function has right and left horizontal asymptotes so there are no oblique asymptotes.
4. Intervals of monotonicity and points of local extrema

$$
\begin{gathered}
f^{\prime}(x)=\frac{-16\left[2 x(x-4)+x^{2}\right]}{x^{4}(x-4)^{2}}=\frac{16 x(8-3 x)}{x^{4}(x-4)^{2}}=\frac{16(8-3 x)}{x^{3}(x-4)^{2}} \\
D_{f^{\prime}}=D_{f} \\
f^{\prime}(x)=0 \\
\frac{16(8-3 x)}{x^{3}(x-4)^{2}}=0 \Leftrightarrow 8-3 x=0 \Leftrightarrow x=\frac{8}{3} \\
f\left(\frac{8}{3}\right)=\frac{16}{\left(\frac{8}{3}\right)^{2}\left(\frac{8}{3}-4\right)}=\frac{16}{\frac{64}{9} \cdot \frac{-4}{3}}=-\frac{27}{16}
\end{gathered}
$$

Therefore, the only critical point of the given function is the stationary point $\left(\frac{8}{3},-\frac{27}{16}\right)$.

$$
S_{1}=\left\{\frac{8}{3}\right\}
$$

The edges of the domain D_{f} of the function f are:

$$
-\infty, 0,4, \infty
$$

so, the intervals of monotonicity are:

$$
(-\infty, 0),\left(0, \frac{8}{3}\right),\left(\frac{8}{3}, 4\right),(4, \infty)
$$

$f^{\prime}(-1)<0 \Rightarrow f$ is decreasing on $(-\infty, 0)$;
$f^{\prime}(1)>0 \Rightarrow f$ is increasing on $\left(0, \frac{8}{3}\right)$;
$f^{\prime}(3)<0 \Rightarrow f$ is decreasing on $\left(\frac{8}{3}, 4\right)$;
$f^{\prime}(5)<0 \Rightarrow f$ is decreasing on $(4, \infty)$.

The point of the local extremum of the function f can only be the critical point of that function.

$$
f^{\prime}(x)>0 \text { for all } x \in\left(0, \frac{8}{3}\right) \quad\left(\text { because } f^{\prime}(1)>0\right)
$$

and

$$
f^{\prime}(x)<0 \text { for all } x \in\left(\frac{8}{3}, 4\right) \text { (because } f^{\prime}(3)<0 \text {) }
$$

so $M\left(\frac{8}{3},-\frac{27}{16}\right)$ is the point of the local maximum of the function f.
5. Intervals of concavity and inflection points

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{16}{x^{6}(x-4)^{4}}\left\{-3 x^{3}(x-4)^{2}-\left[3 x^{2}(x-4)^{2}+2 x^{3}(x-4)\right](8-3 x)\right\} \\
& =\frac{16 x^{2}(x-4)}{x^{6}(x-4)^{4}}\{-3 x(x-4)-[3(x-4)+2 x](8-3 x)\} \\
& =\frac{16}{x^{4}(x-4)^{3}}[-3 x(x-4)-(5 x-12)(8-3 x)] \\
& =\frac{16}{x^{4}(x-4)^{3}}\left(-3 x^{2}+12 x-76 x+15 x^{2}+96\right)=\frac{16}{x^{4}(x-4)^{3}}\left(12 x^{2}-64 x+96\right) \\
& =\frac{64}{x^{4}(x-4)^{3}}\left(3 x^{2}-16 x+24\right)
\end{aligned}
$$

$$
D_{f^{\prime \prime}}=D_{f}
$$

$f^{\prime \prime}(x) \neq 0$ for all $x \in D_{f^{\prime \prime}}$, because the equation $3 x^{2}-16 x+24=0$ has no real solutions.

Therefore, $S_{2}=\emptyset$ so the function has no inflection points.

The edges of the domain D_{f} of the function f are:

$$
-\infty, 0,4, \infty
$$

so, the intervals of concavity are:

$$
(-\infty, 0),(0,4),(4, \infty) .
$$

$f^{\prime \prime}(-1)<0 \Rightarrow f$ is concave downward on $(-\infty, 0)$;
$f^{\prime \prime}(1)<0 \Rightarrow f$ is concave downward on (0,4);
$f^{\prime \prime}(5)>0 \Rightarrow f$ is concave upward on $(4, \infty)$.

6. Graph of the given function

Figure 6.9

Example 2

$$
f(x)=x \cdot \ln ^{2} x
$$

Solution:
The function is elementary and therefore continuous (at each point where it is defined). The same is true for its derivatives.

1. Area of definition (natural domain), parity and periodicity

$$
D_{f}=\{x \in \mathbb{R}: \ln x \in \mathbb{R}\}=\mathbb{R}^{+}=(0, \infty)
$$

The function is neither even nor odd because the domain is not a symmetric set with respect to zero.
2. $\quad \boldsymbol{x}$ - intercept (s) and \boldsymbol{y} - intercept

$$
f(x)=0 \Leftrightarrow x \cdot \ln ^{2} x=0 \Leftrightarrow \ln ^{2} x=0 \Leftrightarrow \ln x=0 \Leftrightarrow x=1
$$

Therefore, $N(1,0)$ is the zero of the function.
$f(0)$ does not exist because $0 \notin D_{f}$. Therefore, the graph of the given function neither intersects nor touches the y - axis.

3. Asymptotes

A possible right vertical asymptote is a line $x=0$. Namely, zero is a point at the edge of the domain D_{f} where the function is not defined, and only the right limit at that point makes sense because the function is not defined to the left of zero

$$
\lim _{x \rightarrow 0^{+0}} x \cdot \ln ^{2} x=[0 \cdot \infty]=\lim _{x \rightarrow 0^{+0}} \frac{\ln ^{2} x}{\frac{1}{x}}=\left[\frac{\infty}{\infty}\right] \stackrel{\text { Hr }}{=}\left[\frac{-\infty}{-\infty}\right]=\lim _{x \rightarrow 0^{+0}} \frac{\frac{2}{x}}{\frac{1}{x^{2}}}=2 \lim _{x \rightarrow 0^{+0}} x=0
$$

Note: Equality $\stackrel{\mathrm{Hr}}{=}$ is obtained by applying the l'Hospital's rule.
So, when $x \rightarrow 0^{+0}$ then $y \rightarrow 0^{+0}$ therefore $x=0$ is not the right vertical asymptote of the given function.

The function could only have a right horizontal asymptote because only the limit $\lim _{x \rightarrow \infty} f(x)$ makes sense (in the domain D_{f} is possible that $x \rightarrow \infty$, but not that $x \rightarrow-\infty$).

$$
\lim _{x \rightarrow \infty} x \cdot \ln ^{2} x=\infty \notin \mathbb{R}
$$

It can be concluded that the given function has no horizontal asymptotes.

The function could have only the right oblique asymptote because only the limits

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=k_{1} \text { and } \lim _{x \rightarrow \infty}\left[f(x)-k_{1} x\right]=l_{1}
$$

make sense.

$$
k_{1}=\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{x \cdot \ln ^{2} x}{x}=\infty \notin \mathbb{R}
$$

so, the function has no oblique asymptotes.
4. Intervals of monotonicity and points of local extrema

$$
\begin{gathered}
f^{\prime}(x)=\ln ^{2} x+x \cdot 2 \ln x \cdot \frac{1}{x}=\ln x(\ln x+2) \\
D_{f^{\prime}}=D_{f}
\end{gathered}
$$

$$
\begin{aligned}
f^{\prime}(x) & =0 \\
\ln x(\ln x+2) & =0 \Leftrightarrow \ln x=0 \text { or } \ln x=-2 \Leftrightarrow x=1 \text { or } x=e^{-2} \\
f(1)=1 \ln ^{2} 1 & =0, f\left(e^{-2}\right)=e^{-2} \ln ^{2} e^{-2}=e^{-2} \cdot(-2)^{2}=4 e^{-2}
\end{aligned}
$$

Therefore, the critical points of the set function are stationary points $(1,0)$ and $\left(e^{-2}, 4 e^{-2}\right)$.

$$
S_{1}=\left\{e^{-2}, 1\right\}
$$

The edges of the domain D_{f} of the function f are:
$0, \infty$
so, the intervals of monotonicity are:

$$
\left(0, e^{-2}\right),\left(e^{-2}, 1\right),(1, \infty) .
$$

$f^{\prime}\left(e^{-3}\right)>0 \Rightarrow f$ is increasing on $\left(0, e^{-2}\right)$;
$f^{\prime}\left(e^{-1}\right)<0 \Rightarrow f$ is decreasing on $\left(e^{-2}, 1\right)$;
$f^{\prime}(e)>0 \Rightarrow f$ is increasing on $(1, \infty)$.
The point of the local extremum of the function f can only be the critical point of that function.

$$
\left.f^{\prime}(x)>0 \text { for all } x \in\left(0, e^{-2}\right) \text { (because } f^{\prime}\left(e^{-3}\right)>0\right)
$$

and

$$
\left.f^{\prime}(x)<0 \text { for all } x \in\left(e^{-2}, 1\right) \text { (because } f^{\prime}\left(e^{-1}\right)<0\right)
$$

so $M\left(e^{-2}, 4 e^{-2}\right)$ is the point of the local maximum of the function f.

$$
\left.f^{\prime}(x)<0 \text { for all } x \in\left(e^{-2}, 1\right) \text { (because } f^{\prime}\left(e^{-1}\right)<0\right)
$$

and

$$
\left.f^{\prime}(x)>0 \text { for all } x \in(1, \infty) \text { (because } f^{\prime}(e)>0\right)
$$

so $m(1,0)$ is the point of the local minimum of the function f.
5. Intervals of concavity and inflection points

$$
\begin{gathered}
f^{\prime \prime}(x)=2 \ln x \cdot \frac{1}{x}+2 \cdot \frac{1}{x}=\frac{2}{x}(\ln x+1) \\
D_{f^{\prime \prime}}=D_{f} \\
\frac{2}{x}(\ln x+1)=0 \Leftrightarrow \ln x+1=0 \Leftrightarrow \ln x=-1 \Leftrightarrow x=e^{-1} \\
f\left(e^{-1}\right)=e^{-1} \\
S_{2}=\left\{e^{-1}\right\}
\end{gathered}
$$

The edges of the domain D_{f} of the function f are:
$0, \infty$
so, the intervals of concavity are:

$$
\left(0, e^{-1}\right),\left(e^{-1}, \infty\right) .
$$

$f^{\prime \prime}\left(e^{-2}\right)<0 \Rightarrow f$ is concave downward on $\left(0, e^{-1}\right)$;
$f^{\prime \prime}(1)>0 \Rightarrow f$ is concave upward on $\left(e^{-1}, \infty\right)$.
The inflection point can only be the point (e^{-1}, e^{-1}).

$$
\left.f^{\prime \prime}(x)<0 \text { for all } x \in\left(0, e^{-1}\right) \text { (because } f^{\prime \prime}\left(e^{-2}\right)<0\right)
$$

and

$$
\left.f^{\prime \prime}(x)>0 \text { for all } x \in\left(e^{-1}, \infty\right) \text { (because } f^{\prime \prime}(1)>0\right)
$$

so $I\left(e^{-1}, e^{-1}\right)$ is the inflection point of the function f.

6. Graph of the given function

Figure 6.10

Example 3

$$
f(x)=x e^{-x^{2}}
$$

Solution:
The function is elementary and therefore continuous (at each point where it is defined). The same is true for its derivatives.

1. Area of definition (natural domain), parity and periodicity

$$
D_{f}=\mathbb{R}=(-\infty, \infty)
$$

For every $x \in D_{f}$

$$
f(-x)=-x e^{-(-x)^{2}}=-x e^{-x^{2}}=-f(x)
$$

therefore, the function f is an odd function. So, the function is examined only at the set

$$
D_{f} \cap[0, \infty)=\mathbb{R} \cap[0, \infty)=[0, \infty)
$$

2. $\quad x$ - intercept(s) and y - intercept

$$
f(x)=0 \Leftrightarrow x e^{-x^{2}}=0 \Leftrightarrow x=0
$$

$N(0,0)$ is the zero and y-intercept.

3. Asymptotes

$D_{f}=\mathbb{R}$ so, the function has no vertical asymptotes.
The function could only have right horizontal asymptote because only the limit $\lim _{x \rightarrow \infty} f(x)$ make sense (in the domain D_{f} is only possible that $x \rightarrow \infty$).

$$
\lim _{x \rightarrow \infty} x e^{-x^{2}}=[\infty \cdot 0]=\lim _{x \rightarrow \infty} \frac{x}{e^{x^{2}}}=\left[\frac{\infty}{\infty}\right] \stackrel{\text { Hr }}{=} \lim _{x \rightarrow \infty} \frac{1}{2 x e^{x^{2}}}=0
$$

$\Rightarrow y=0$ is the right horizontal asymptote.
The function does not have the right oblique asymptote because it has the right horizontal asymptote.
4. Intervals of monotonicity and points of local extrema

$$
\begin{gathered}
f^{\prime}(x)=e^{-x^{2}}-2 x^{2} e^{-x^{2}}=\left(1-2 x^{2}\right) e^{-x^{2}} \\
D_{f^{\prime}}=D_{f} \\
f^{\prime}(x)=0 \\
\left(1-2 x^{2}\right) e^{-x^{2}}=0 \Leftrightarrow 1-2 x^{2}=0 \stackrel{x \geq 0}{\Rightarrow} x=\frac{1}{\sqrt{2}} \approx 0.707107 \\
f\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}} e^{-\frac{1}{2}} \\
S_{1}=\left\{\frac{1}{\sqrt{2}}\right\}
\end{gathered}
$$

The edges of the interval $[0, \infty)$ are:

$$
0, \infty
$$

so, the intervals of monotonicity (on the interval $[0, \infty)$) are:

$$
\left(0, \frac{1}{\sqrt{2}}\right),\left(\frac{1}{\sqrt{2}}, \infty\right) .
$$

$f^{\prime}\left(\frac{1}{2}\right)>0 \Rightarrow f$ is increasing on $\left(0, \frac{1}{\sqrt{2}}\right)$;
$f^{\prime}(1)<0 \Rightarrow f$ is decreasing on $\left(\frac{1}{\sqrt{2}}, \infty\right)$.
The point of the local extremum of the function f can only be the critical point of that function.

$$
f^{\prime}(x)>0 \text { for all } x \in\left(0, \frac{1}{\sqrt{2}}\right) \quad\left(\text { because } f^{\prime}\left(\frac{1}{2}\right)>0\right)
$$

and

$$
\left.f^{\prime}(x)<0 \text { for all } x \in\left(\frac{1}{\sqrt{2}}, \infty\right) \quad \text { (because } f^{\prime}(1)<0\right)
$$

so $M\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} e^{-\frac{1}{2}}\right)$ is the point of the local maximum of the function f.
5. Intervals of concavity and inflection points

$$
\begin{gathered}
f^{\prime \prime}(x)=-4 x e^{-x^{2}}-2 x\left(1-2 x^{2}\right) e^{-x^{2}}=2 x\left(2 x^{2}-3\right) e^{-x^{2}} \\
D_{f^{\prime \prime}}=D_{f}
\end{gathered}
$$

$$
f^{\prime \prime}(x)=0
$$

$$
2 x\left(2 x^{2}-3\right) e^{-x^{2}}=0 \Leftrightarrow x\left(2 x^{2}-3\right)=0 \Rightarrow x=0 \text { or } x=\sqrt{\frac{3}{2}} \approx 1.22474
$$

$$
f(0)=0, f\left(\sqrt{\frac{3}{2}}\right)=\sqrt{\frac{3}{2}} e^{-\frac{3}{2}}
$$

$$
S_{2}=\left\{0, \sqrt{\frac{3}{2}}\right\}
$$

The edges of the interval $[0, \infty)$ are:

$$
0, \infty
$$

so, the intervals of concavity (on the interval $[0, \infty)$) are:

$$
\left(0, \sqrt{\frac{3}{2}}\right),\left(\sqrt{\frac{3}{2}}, \infty\right) .
$$

$f^{\prime \prime}(1)<0 \Rightarrow f$ is concave downward on $\left(0, \sqrt{\frac{3}{2}}\right)$;
$f^{\prime \prime}(2)>0 \Rightarrow f$ is concave upward on $\left(\sqrt{\frac{3}{2}}, \infty\right)$.

$$
\left.f^{\prime \prime}(x)<0 \text { for all } x \in\left(0, \sqrt{\frac{3}{2}}\right) \text { (because } f^{\prime \prime}(1)<0\right)
$$

and

$$
f^{\prime \prime}(x)>0 \text { for all } x \in\left(\sqrt{\frac{3}{2}}, \infty\right)\left(\text { because } f^{\prime \prime}(2)>0\right)
$$

so $I\left(\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}} e^{-\frac{3}{2}}\right)$ is the inflection point of the function f.

6a. Graph of the given function on the interval $[0, \infty\rangle$

Figure 6.11

6b. Graph of the given function

Figure 6.12

Example 4

$$
f(x)=x e^{\frac{1}{x-2}}
$$

Solution:

The function is elementary and therefore continuous (at each point where it is defined). The same is true for its derivatives.

1. Area of definition (natural domain), parity and periodicity

$$
D_{f}=\mathbb{R} \backslash\{2\}=(-\infty, 2) \cup(2, \infty)
$$

The function is neither even nor odd because the domain is not a symmetric set with respect to zero.
2. $\quad \boldsymbol{x}$ - intercept(s) and \boldsymbol{y} - intercept

$$
f(x)=0 \Leftrightarrow x e^{\frac{1}{x-2}}=0 \Leftrightarrow x=0
$$

$N(0,0)$ is the zero and the y - intercept.

3. Asymptotes

A possible right vertical asymptote is the line $x=2$. Namely, 2 is the point on the edge of the domain D_{f} where the function is not defined. Obviously, both limits

$$
\lim _{x \rightarrow 2^{+0}} f(x) \text { and } \lim _{x \rightarrow 2^{-0}} f(x)
$$

make sense.
$\lim _{x \rightarrow 2^{+0}} x e^{\frac{1}{x-2}}=\infty$ so, $x=2$ is the right vertical asymptote.

$$
\lim _{x \rightarrow 2^{-0}} x e^{\frac{1}{x-2}}=0
$$

The function could have horizontal asymptotes because the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ make sense (in the domain D_{f} is possible that $x \rightarrow \infty$ and $x \rightarrow-\infty$).
$\left.\begin{array}{l}\lim _{x \rightarrow \infty} x e^{\frac{1}{x-2}}=\infty \notin \mathbb{R} \\ \lim _{x \rightarrow-\infty} x e^{\frac{1}{x-2}}=-\infty \notin \mathbb{R}\end{array}\right\} \Rightarrow$ the function has no horizontal asymptotes.
The function could have oblique asymptotes because all the associated limits make sense (in the domain D_{f} is possible that $x \rightarrow \infty$ and $\left.x \rightarrow-\infty\right)$.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{x e^{\frac{1}{x-2}}}{x}=1=k_{1} \in \mathbb{R} \backslash\{0\} \\
\lim _{x \rightarrow \infty}\left[f(x)-k_{1} x\right]= & \lim _{x \rightarrow \infty}\left(x e^{\frac{1}{x-2}}-x\right)=[\infty-\infty]=\lim _{x \rightarrow \infty} x\left(e^{\frac{1}{x-2}}-1\right)=[\infty \cdot 0] \\
= & \lim _{x \rightarrow \infty} \frac{e^{\frac{1}{x-2}}-1}{\frac{1}{x}}=\left[\frac{0}{0}\right] \stackrel{\operatorname{Hr}}{=} \lim _{x \rightarrow \infty} \frac{-\frac{1}{(x-2)^{2}} e^{\frac{1}{x-2}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x^{2}}{(x-2)^{2}} e^{\frac{1}{x-2}} \\
= & \underbrace{\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}-4 x+4}}_{=1} \cdot \underbrace{\lim _{x \rightarrow \infty} e^{\frac{1}{x-2}}}_{=1}=1=l_{1} \in \mathbb{R}
\end{aligned}
$$

so, $y=x+1$ is the right oblique asymptote.

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{x e^{\frac{1}{x-2}}}{x}=1=k_{2} \in \mathbb{R} \backslash\{0\} \\
\lim _{x \rightarrow-\infty}\left[f(x)-k_{2} x\right]=\lim _{x \rightarrow-\infty}\left(x e^{\frac{1}{x-2}}-x\right)=[-\infty+\infty]=\lim _{x \rightarrow-\infty} x\left(e^{\frac{1}{x-2}}-1\right)=[-\infty \cdot 0]
\end{gathered}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{e^{\frac{1}{x-2}}-1}{\frac{1}{x}}=\left[\frac{\mathbf{0}}{\mathbf{0}}\right] \stackrel{\operatorname{Hr}}{=} \lim _{x \rightarrow-\infty} \frac{-\frac{1}{(x-2)^{2}} e^{\frac{1}{x-2}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{x^{2}}{(x-2)^{2}} e^{\frac{1}{x-2}} \\
& =\underbrace{\lim _{x \rightarrow-\infty} \frac{x^{2}}{x^{2}-4 x+4}}_{=1} \cdot \underbrace{\lim _{x \rightarrow-\infty} e^{\frac{1}{x-2}}}_{=1}=1=l_{2} \in \mathbb{R}
\end{aligned}
$$

so, $y=x+1$ is the left oblique asymptote.

4. Intervals of monotonicity and points of local extrema

$$
\begin{gathered}
f^{\prime}(x)=e^{\frac{1}{x-2}}-\frac{x}{(x-2)^{2}} e^{\frac{1}{x-2}}=e^{\frac{1}{x-2}}\left[1-\frac{x}{(x-2)^{2}}\right]=\frac{x^{2}-5 x+4}{(x-2)^{2}} e^{\frac{1}{x-2}} \\
D_{f^{\prime}}=D_{f} \\
\frac{f^{\prime}(x)=0}{(x-2)^{2}} e^{\frac{1}{x-2}}=0 \Leftrightarrow x^{2}-5 x+4=0 \Leftrightarrow x=1 \text { or } x=4 \\
f(1)=e^{-1}, f(4)=4 e^{\frac{1}{2}}
\end{gathered}
$$

Therefore, the critical points of the given function are stationary points $\left(1, e^{-1}\right)$ and $\left(4,4 e^{\frac{1}{2}}\right)$.

$$
S_{1}=\{1,4\}
$$

The edges of the domain D_{f} of the function f are:

$$
-\infty, 2, \infty
$$

so, the intervals of monotonicity are:

$$
(-\infty, 1),(1,2),(2,4),(4, \infty) .
$$

$f^{\prime}(0)>0 \Rightarrow f$ is increasing on $(-\infty, 1)$;
$f^{\prime}\left(\frac{3}{2}\right)<0 \Rightarrow f$ is decreasing on $(1,2)$;
$f^{\prime}(3)<0 \Rightarrow f$ is decreasing on $(2,4)$;
$f^{\prime}(5)>0 \Rightarrow f$ is increasing on $(4, \infty)$.
The points of the local extrema of the function f can only be critical points of that function.

$$
\left.f^{\prime}(x)>0 \text { for all } x \in(-\infty, 1) \text { (because } f^{\prime}(0)>0\right)
$$

and

$$
f^{\prime}(x)<0 \text { for all } x \in(1,2) \quad\left(\text { because } f^{\prime}\left(\frac{3}{2}\right)<0\right)
$$

so $M\left(1, e^{-1}\right)$ is the point of the local maximum of the function f.

$$
\left.f^{\prime}(x)<0 \text { for all } x \in(2,4) \text { (because } f^{\prime}(3)<0\right)
$$

and

$$
\left.f^{\prime}(x)>0 \text { for all } x \in(4, \infty) \text { (because } f^{\prime}(5)>0\right)
$$

so $m\left(4,4 e^{\frac{1}{2}}\right)$ is the point of the local minimum of the function f.
5. Intervals of concavity and inflection points

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{\left[(2 x-5) e^{\frac{1}{x-2}}-\frac{x^{2}-5 x+4}{(x-2)^{2}} e^{\frac{1}{x-2}}\right](x-2)^{2}-2(x-2)\left(x^{2}-5 x+4\right) e^{\frac{1}{x-2}}}{(x-2)^{4}} \\
&=\frac{(2 x-5)(x-2)-\frac{x^{2}-5 x+4}{x-2}-2\left(x^{2}-5 x+4\right)}{(x-2)^{3}} e^{\frac{1}{x-2}} \\
&=\frac{2 x^{2}-9 x+10-\frac{x^{2}-5 x+4}{x-2}-2 x^{2}+10 x-8}{(x-2)^{3}} e^{\frac{1}{x-2}} \\
&=\frac{x+2-\frac{x^{2}-5 x+4}{x-2}}{(x-2)^{3}} e^{\frac{1}{x-2}}=\frac{(x+2)(x-2)-x^{2}+5 x-4}{(x-2)^{4}} e^{\frac{1}{x-2}} \\
&=\frac{x^{x}-4-x^{2}+5 x-4}{(x-2)^{4}} e^{\frac{1}{x-2}}=\frac{5 x-8}{(x-2)^{4}} e^{\frac{1}{x-2}} \\
& D_{f^{\prime \prime}}=D_{f} \\
& \frac{5 x-8}{(x-2)^{4}} e^{\frac{1}{x-2}}=0 \Leftrightarrow 5 x-8=0 \Leftrightarrow x=\frac{8}{5} \\
& f\left(\frac{8}{5}\right)=\frac{8}{5} e^{-\frac{5}{2}} \\
& S_{2}=\left\{\frac{8}{5}\right\}
\end{aligned}
$$

The edges of the domain D_{f} of the function f are:

$$
-\infty, 2, \infty
$$

so, the intervals of concavity are:

$$
\left(-\infty, \frac{8}{5}\right),\left(\frac{8}{5}, 2\right),(2, \infty)
$$

$f^{\prime \prime}(1)<0 \Rightarrow f$ is concave downward on $\left(-\infty, \frac{8}{5}\right)$;
$f^{\prime \prime}\left(\frac{9}{5}\right)>0 \Rightarrow f$ is concave upward on $\left(\frac{8}{5}, 2\right)$;
$f^{\prime \prime}(3)>0 \Rightarrow f$ is concave upward on $(2, \infty)$.

$$
\left.f^{\prime \prime}(x)<0 \text { for all } x \in\left(-\infty, \frac{8}{5}\right) \quad \text { (because } f^{\prime \prime}(1)<0\right)
$$

and

$$
f^{\prime \prime}(x)>0 \text { for all } x \in\left(\frac{8}{5}, 2\right) \quad\left(\text { because } f^{\prime \prime}\left(\frac{9}{5}\right)>0\right)
$$

so $I\left(\frac{8}{5}, \frac{8}{5} e^{-\frac{5}{2}}\right)$ is the inflection point of the function f.
6. Graph of the given function

Figure 6.13

Example 5

$$
f(x)=\sqrt{|x|}\left(2-\ln x^{2}\right)
$$

Solution:

The function is elementary and therefore continuous (on each point where it is defined). The same is true for its derivatives.

1. Area of definition (natural domain), parity and periodicity

$$
D_{f}=\mathbb{R} \backslash\{0\}=(-\infty, 0) \cup(0, \infty)
$$

For all $x \in D_{f}$:

$$
f(-x)=\sqrt{|-x|}\left[2-\ln (-x)^{2}\right]=\sqrt{|x|}\left(2-\ln x^{2}\right)=f(x)
$$

So, f is an even function. Therefore, it is sufficient to examine the function only on the set

$$
D_{f} \cap[0, \infty)=(0, \infty) .
$$

For every $x>0$ is valid

$$
f(x)=\sqrt{x}(2-2 \ln x)=2 \sqrt{x}(1-\ln x) .
$$

2. \boldsymbol{x} - intercept(s) and \boldsymbol{y} - intercept

$$
f(x)=0 \Leftrightarrow 2 \sqrt{x}(1-\ln x)=0 \Leftrightarrow 1-\ln x=0 \Leftrightarrow \ln x=1 \Leftrightarrow x=e
$$

Therefore, $N(e, 0)$ is the only zero of the function on the interval $(0, \infty)$.
$f(0)$ does not exist because $0 \notin D_{f}$. Therefore, the graph of the function neither intersects nor touches the y - axis.
3. Asymptotes

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+0}} f(x) & =\lim _{x \rightarrow 0^{+0}} 2 \sqrt{x}(1-\ln x)=[0 \cdot \infty]=\lim _{x \rightarrow 0^{+0}} \frac{1-\ln x}{\frac{1}{2 \sqrt{x}}}=\left[\frac{\infty}{\infty}\right] \stackrel{\operatorname{Hr}}{=} \lim _{x \rightarrow 0^{+0}} \frac{-\frac{1}{x}}{-\frac{1}{4 x \sqrt{x}}} \\
& =\lim _{x \rightarrow 0^{+0}} 4 \sqrt{x}=0
\end{aligned}
$$

so, the function has no vertical asymptotes on the right side of the graph.

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} 2 \sqrt{x}(1-\ln x)=-\infty \notin \mathbb{R}
$$

so, the function has no right horizontal asymptote.

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} \frac{2(1-\ln x)}{\sqrt{x}}=\left[\frac{-\infty}{\infty}\right] \stackrel{\operatorname{Hr}}{=} \lim _{x \rightarrow \infty} \frac{-\frac{2}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{-4}{\sqrt{x}}=0=k_{1}
$$

$k_{1} \notin \mathbb{R} \backslash\{0\}$ so, the function has no right oblique asymptote.
4. Intervals of monotonicity and points of local extrema

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{\sqrt{x}}(1-\ln x)+2 \sqrt{x} \cdot \frac{-1}{x}=\frac{1-\ln x-2}{\sqrt{x}}=-\frac{1+\ln x}{\sqrt{x}} \\
D_{f^{\prime}}=D_{f} \cap[0, \infty) \\
-\frac{1+\ln x}{\sqrt{x}}=0 \Leftrightarrow 1+\ln x=0 \Leftrightarrow \ln x=-1 \Leftrightarrow x=e^{-1} \\
f\left(e^{-1}\right)=4 \sqrt{e^{-1}}=4 e^{-\frac{1}{2}} \\
S_{1}=\left\{e^{-1}\right\}
\end{gathered}
$$

The edges of the interval $(0, \infty)$ are:

$$
0, \infty
$$

so, the intervals of monotonicity (on the interval $(0, \infty)$) are:

$$
\left(0, e^{-1}\right),\left(e^{-1}, \infty\right)
$$

$f^{\prime}\left(e^{-2}\right)>0 \Rightarrow f$ is increasing on $\left(0, e^{-1}\right)$;
$f^{\prime}(1)<0 \Rightarrow f$ is decreasing on $\left(e^{-1}, \infty\right)$.
The point of the local extremum of the function f can only be the critical point of that function.

$$
\left.f^{\prime}(x)>0 \text { for all } x \in\left(0, e^{-1}\right) \text { (because } f^{\prime}\left(e^{-2}\right)>0\right)
$$

and

$$
\left.f^{\prime}(x)<0 \text { for all } x \in\left(e^{-1}, \infty\right) \text { (because } f^{\prime}(1)<0\right)
$$

so $M\left(e^{-1}, 4 e^{-\frac{1}{2}}\right)$ is the point of the local maximum of the function f.
5. Intervals of concavity and inflection points

$$
f^{\prime \prime}(x)=-\frac{\frac{1}{x} \sqrt{x}-\frac{1}{2 \sqrt{x}}(1+\ln x)}{x}=\frac{\frac{1}{2 \sqrt{x}}(1+\ln x)-\frac{2}{2 \sqrt{x}}}{x}=\frac{\ln x-1}{2 x \sqrt{x}}
$$

$$
\begin{gathered}
D_{f^{\prime \prime}}=D_{f} \cap[0, \infty) \\
\frac{f^{\prime \prime}(x)=0}{\frac{\ln x-1}{2 x \sqrt{x}}=0 \Leftrightarrow \ln x-1=0 \Leftrightarrow x=e} \\
f(e)=0 \\
S_{2}=\{e\}
\end{gathered}
$$

The edges of the interval $(0, \infty)$ are:

$$
0, \infty
$$

so, the intervals of concavity (on the interval $(0, \infty)$) are:

$$
(0, e),(e, \infty) .
$$

$f^{\prime \prime}(1)<0 \Rightarrow f$ is concave downward on $(0, e)$;
$f^{\prime \prime}\left(e^{2}\right)>0 \Rightarrow f$ is concave upward on (e, ∞).

$$
\left.f^{\prime \prime}(x)<0 \text { for all } x \in(0, e) \text { (because } f^{\prime \prime}(1)<0\right)
$$

and

$$
\left.f^{\prime \prime}(x)>0 \text { for all } x \in(e, \infty) \text { (because } f^{\prime \prime}\left(e^{2}\right)>0\right)
$$

so $I(e, 0)$ is the inflection point of the function f.
6a. Graph of the given function on the interval $\langle\mathbf{0}, \infty\rangle$

Figure 6.14

6b. Graph of the given function

Figure 6.15

Example 6

Example of a function where the point of the local extremum is a critical point that is not stationary:

$$
\begin{gathered}
f(x)=|x|=\left\{\begin{array}{r}
x \text { if } x \geq 0 \\
-x
\end{array} \text { if } x<0\right.
\end{gathered}, \begin{gathered}
D_{f}=\mathbb{R}=(-\infty, \infty) \\
f^{\prime}(x)=\left\{\begin{array}{r}
1 \text { if } x>0 \\
-1 \text { if } x<0
\end{array}\right.
\end{gathered}
$$

The right derivation f_{r}^{\prime} and the left derivation f_{l}^{\prime} are not equal for $x=0$.
$\left.\begin{array}{l}f_{r}^{\prime}(0)=\lim _{t \rightarrow 0^{+0}} \frac{f(0+t)-f(0)}{t-0}=\lim _{t \rightarrow 0^{+0}} \frac{t}{t}=1 \\ f_{l}^{\prime}(0)=\lim _{t \rightarrow 0^{-0}} \frac{f(0+t)-f(0)}{t-0}=\lim _{t \rightarrow 0^{-0}} \frac{-t}{t}=-1\end{array}\right\} \Rightarrow f^{\prime}(0)=\lim _{t \rightarrow 0} \frac{f(0+t)-f(0)}{t-0}$ does not exist.

$$
f(0)=0
$$

Therefore, $(0,0)$ is a critical point that is not stationary.

$$
S_{1}=\{0\}
$$

The edges of the domain of the function f are:

$$
-\infty, \infty
$$

so, the intervals of monotonicity are:

$$
(-\infty, 0),(0, \infty)
$$

$$
f^{\prime}(x)=-1<0 \text { for all } x<0
$$

and

$$
f^{\prime}(x)=1>0 \text { for all } x>0
$$

so $m(0,0)$ is the point of the local minimum of the function f.
Graph of the function $y=|x|$:

Figure 6.16

