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6 CALCULUS

Math in Thermodynamics

Partial derivation of ideal gas state equation
F p-V=n-R-T

#L:% f(p,V,t) =0
i3

o p-dV+v-dp=dn-R-T+n-dR-T+n-R-dT

p-dV+V-dp=dn-R-T+n-R-dT

DETAILED DESCRIPTION:

Most first-year students find it hard to understand and acquire mathematical notions of differential
calculus. This is often due to insufficient prior knowledge or because these notions are really difficult
and require mathematical and logical maturity. Given the difficulties, this unit explains the matter
gradually, starting with the targeted theoretical notions, which is followed by exercises and solved
problems, with the aim of teaching the students how to solve tasks independently and how to apply the
acquired knowledge in solving problem tasks in the area of maritime affairs.

Basic notions associated with the derivation of function are explained, along with the rules and
techniques of derivatives. A particular attention is paid to the application of derivation in the problems
of the tangent, the normal, the differential and the establishing the function limits. The application of
derivations in the flow examination and function graph drawing are explained and followed by the
application of derivations in maritime affairs.

AIM: Acquire knowledge and skills in those areas of differential calculus which are necessary to follow
the curricula of other courses of the study programme, and are expected to be implemented in maritime
practice.
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Learning Outcomes:

1. Define the notions of derivative, function limit and differential.

2. Apply simple and complex derivation rules when solving tasks.

3. Perform the derivation of the complex, parametrically or implicitly given function.

4. Explain the concept of the real variable of real functions and the geometric interpretation of
the derivative at a point.

5. Apply the derivative in finding the local and global extremes of the function of a given
variable, and the points of the function inflection.

6. Analyse the flow of an elementary function by using derivation, and sketch its graph.

Prior Knowledge: sets and functions, sequences and series, limits and continuity of the
function

Relationship to real maritime problems: mechanics (problem of speed), meteorology (weather
forecast — extreme sea states), electronics (graphic layouts), navigation (establishing the
distance, navigability of the fairway)...
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6.1. Derivative

The derivative is one of the essential notions in mathematics. It is necessary for making the so-
called differential calculus. The notion was first introduced by the English mathematician,
physicist and astronomer Isaac Newton (1642-1727). He described it before 1669, when
solving the problem of motion of a body that is moving unevenly along the line, at any
moment of its movement. The same discovery was attributed to Gottfried W. Leibniz (1646-
1716), German mathematician and philosopher, who independently developed his
foundations, while solving the problem of establishing the coefficient of the direction of the
curve tangent.

Knowing that vessels move across water areas, we can only assume the actual importance of
the application of derivatives in maritime affairs.

The notion of derivation becomes clear with the help of examples.

If f:I—>R(ory =f(x)) is the given function on the interval I ¢ R and if x, € [ is a point
of the interval (see the figure).

A

=
x
Xy

0

If x#x,, xel, we observe two values of the function: f(x) i f(xo). The expression
Ax=x-x, is called the growth (or differentiation) of the argument x while

Af (xo ) =f (x) ~-f (xo ) is called the change (or growth) of the function at the point xo.

Let us now define the difference quotient:

g(x)= S ()= /()

X=X,

X#X,. (1)

7

The function g(x) gives information on the rate of change of the function f from xo to x, that

is, g(x) measures the average change of the function from xo to x. The smaller the growth Ax
is, the more accurate is the information on the function change of rate that g(x) gives at the
point xo.
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Definition 1: It is said that the function f : I — R is differentiable (synonym: derivable) at the

point x, € I = <a,b> if there is a boundary value:

)= )

X*)XO x —_ xO

= f'(x,)eR. (2)
The number f'(xo) is called the derivative fat the point xo. It is said that fis differentiable at /

if it is differentiable at any point x € 1.

If f:1— R is differentiable at /, then x — f”(x) defines a new function f':I — R, the so-
called derivative f at /.

From the philosophical standpoint, derivation is the ratio of yield to investment. In
programming, derivation is the ratio of output to input. In physical world, derivation is the ratio
of arbitrarily small travel through arbitrarily little time, i.e. speed.

In geometry, this can be explained by the following figure:

N\

0 Xp x

Xy

In the graph G, of the function f:1 — R there are points To(xo,f(x0 )) i T(x, £(x)) to which
is assigned the line s, called the secant graph of the function Gf on the interval [xo, x]. The

secant coefficient is achieved through formula:

f(x)_f(xo) s

X—Xx,

s (3)

If the point 77 “moves” across the graph Gf toward the point T, then the secant s turns
around the point T} . If, in this process, there is a limit line t with a position towards which the
secant s streams, regardless of whether the point 7 streams toward T, right or left of the
T;,, then t is the tangent of the graph Gf at the point 7j,. If the function f has a derivation at

the point x, € I, then, according to the relation (3), it appears that
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f(x,)= limM: limk, =k, (4)

X=X, X — xO X=X,

Thatis, f'(x,)=k,. (5)

Therefore, the numerical value f'(xo) of the derivative 7 at the point X, represents the

coefficient of the direction & of the tangent ¢ drawn in the graph G, at the point
To(xo:f(xo))-

Below are the examples of calculating the derivation by definition for some known elementary
functions. They are followed by a table of their derivations, which can be proved in analogy
with these examples.

Example 1
Let f(x)=7x;x € R. Define f'(x,), where x, €R.

Solution:

1'(x) i L2 )y SeoS  SOen) s s

X*)X[) x —_ x() X‘)XO x —_ ‘xO .X*)XO x —_ ‘x() x~>x0

As we can see, f'(xo) does not depend on the point xo, which is obvious as f(x)=5x is a

linear function whose average change rate is everywhere the same.

Example 2
Let f(x)=x"; xeR. Define f'(x,), where x, € R .
Solution:

— 2_ 2 i
f'(%) T A A CY RTINS T xo)(x+x°)=1im(x+xo)=2xo.
X*)XO x —_— XO x~>x0 x —_— ‘x() X‘)XO x —_— ‘xO X*)XO

!

In this way, we have shown that (xz) =2x,xeR.
Example 3
Let f(x)=x"; xeR. Define f"(x,), where x, € R .

Solution:

o) - OIS 2o o s )
X*).XO x —_ xo X*)XO x —_ xo )C*)XO x —_ xo

RT 2 2) _ 2
—hm(x +xx, + X, )—3x0 .

X=X
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!

In this way, we have shown that (x3) =3x’ xeR.

Example 4

Let f(x)=+x; xeR. Define f'(x,), where x, € R.

Solution:
f’(xo) - limM — limM — lim \/;_\/X—O .\/;Jr Yo
X‘))CO x — x() X‘))CO x —_— x() X‘))CO x —_— xo J; + xo
Slim % gy

YT WA N

!

In this way, we have shown that (\/;) = xeR.

1
2Jx”
6.1 Table and rules of deriving elementary functions
If we continue to solve the examples similar to the ones presented in the previous unit, we

can prove the validity of the following table of deriving elementary functions, which we can
“take for granted”:

1) |€'=0 (CeR)
2) X':l
3) (xa) :a.xa_l aeR
2 |) =
5) (ax) =a'Ina a>0
6) (lnx) :; x>0
| 1
7) |(log,x) =—— x>0, a>0
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!

8) (sinx) =cosXx

!

9) (cos x) =—sinx
10) (1gv) = cos’® x
ferex) =
11) sin® x
5 (Arc sin x)’ = ! |x| <1
12) 1— 2
3 (Arc cos x), =— L |x| <1
13) 1— 2
(Arctg x)' -
14) 1+ x?
(Arcctg x)' =- !
15) 1+x*

!

16) (th) = chx

!

17) (chx) = shx

' 1
18) (thX) = B 2x
' 1
19) (cthx) = T
' 1
(Arshx) =
20) 1+x*
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! 1
21) (Arehx) = — x> 1
! 1
22) (Arthx) = — |x| <1
! 1
23) (Arcthx) =— e |x| >1

Derivation of any other function should be calculated by applying the rules of deriving the
functions, as follows:

[f(x)+ g(x)] _ f'(x)+ g'(x) derivation of the sum §nd the difference
of functions

[f(x)-g(x)] :f’(x)-g(x)+ f(x)-g’(x) derivation of the product of functions

[f(x)} (x)-g(x)- f(x)-g'(x) derivation of the function quotient

B gz(x) (g(x)i())

{g[f(x)]}’ = g[r(x)] /'(x) derivation of the functions’ composition

Define the derivative f(x) =6x" —4x* +3x-2.

Solution:

! !

7)) =(6x* —dx* +3x-2) =6-(¢*) —4-(*) 432~ 2=
=6-3x" —4-2x+3-1-0=18x" —8x+3.
Define h'(x) if h(x)=e" -sinx.
Solution:
B (x)=1(x)-g(x)+ £ (x)-g'(¥) = (e") sinx+e(sinx) =
=¢"-sinx+e"-cosx =e" (sinx+cosx).

Example
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2
Let A(x)= x2+—3x+1 . Define h'(x).
x°=3x+2
Solution:

I (x) = 7(x)g(x)-f(x)-g'(x) (& +3x+1) ( =3x42) (x> +3x+1) (x> =32 +2)

g (%) (x*—3x+2)
B (2x+3)(x2 —3x+2)—()c2 +3x+1)(2x—3) _—6x"+2x+9
B (x2 —3x+2)2 B (x2 —3x+2)2 .

Example 4

Define the derivatives:

(1.) h(x)= e (2.) h(x) (2x2 —3x)3;

(3.) h(x)= sin(3x3 - 4);

Solution:

(1) & (x) _ (e3x2—2x+1 )r _ e3x2—2x+l .(3x2 _2x+1), _ e3x2—2x+1 ~(6x—2).

! '

(2.) h'(x)z((2x2—3x)3) =3(2x% -3x) (247 - 3x) =3(2+* -3x) - (4x-3).

! !

h'(x) = (sin(?)x3 —4)) = cos(3x3 —4)-(3x3 —4) = cos(3x3 —4)-(9x2) =9x° cos(3x3 —4)
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Exercises

Exercices 6.1

Find the derivative:

(1) f(x)=3-9x; @) glx)= J—‘
X

Solution:

2x6
2 2 i 2
(2.) g(x):2x 3 :2x 5 3=2x3 —3x 3.
3x2 xg
4 1 2\ -2 ) 2
g(x)=2-—x3 -3 - S x3=2x3+ = 8x” 16
3 3 3 2 3.3/

Exercices 6.2

Find the derivative:

(1. y=ln(\/1+e" —1)—ln(\/1+ex +1); (2.) y=%cos3x(3cos2x—5).

Solution:

(1) y'= 1 . l.ed 1 . l-e* _
Vite' =1 241+e" l+e  +1 24l+e’
_ e’ _\/1+ex+1—( 1+e” —1)_ e’ _ 2 B 1
2Wiver Wite —1i+e +1) 2Jl4er 1+e =1 Jflper

(2.) y'=%[3cos2 x~(— sinx)-(3c0s2 x—5)+ cos’ x~6cosx-(— sinx)] =

=— SCOSZX—5)=

2 .
3cos x~sznx(

2 .
I (Bcos” x5+ 2c0s” )=~ SEE

5 2 . 2 2 .
=§COS x-smx(l—cos X):COS x-sm3x.
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Exercices 6.3

Define the derivative:

. 5
(l) f(x):w; (2) f(x)Zx_x;
Sinx —cos x e
‘- a) f(t)=2t-sint—{t* =2)cost.
(3.) f(a):w; @) f(t) sin ( )cos
2a
Solution:

! !

f'(x) _ (sin X+ cos x) (sin X —cos x) — (sin X+ cos x)(sin X —coS x)

(1) . 2 -
(sznx—cosx)
_ (cos X —sin x)(sin X —cos x) - (sin X+ cos x)(cos X+sin x) _
(sin X —cos x)2
_ cos x sinx —sin” x — cos’ x+sinxcosx—(sinxcosx+cos2 x + sin’ x+coks*xs>*inx)=
(sinx—cosx)2
:2cosxsinx—1—2cosxsinx—1:_ 2
(Sinx—cosx)2 (sinx—cos x)2 '
2) f’(x):(xs)' e —)2c (ex)’ _ Sxte” - x’e’ _5x :x _ x4(5x—x)
(ex) e e e
2 —_ ' . —_ —_ — 2 —_ .
5) f'(a)=(2°° a+3) -20- (20 ~a+3)20) _(4a-1)-20 (22a a+3)2
(20@) 4o
_8a’—20-4a’ +20-6 _4a’ -6 _2a’ -3
4a’ 4’ 207

4) S )=(2t) smt+2tsmt ( )cost—(t2—2Xcost),:
=2sint+2tcost—2tcost - 2—2X—smt) 2sint +1t* sint —2sint =t* sint .

Exercices 6.4

Find the derivative:
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(1) y= sin’ X;

(2.) y = In(tgx);

(3) y=5"; 4) y=In sin(x3 + 1);
(5.) y =arcsin1— x%; (6.) y= lns(tg?ax);
(7.) y =sin’ L (8.) y = arcsin .
. l-x 1+x°
Solution:
(1) y'= (sin3 x) =3sin® x - (sin x)’ =3sin’ x-cosx;
(2) ) =[ln(tgx)]' = L-(tgx)' _cosx 1 _ 1 __ 2

; : = ;
Sinx COSZX SinxXcos X sin2x

(3.) ) :[ CO”]': 5% -ln5~(cosx)' =5 . [n5-(—sinx)=—-5“"-In5-sinx;

(4.) ' =Mﬁ)-[sin(x3 + 1)] - m);ﬁj-cos(x3 +1)x’ + 1)' = ?:)czcz‘g(x3 +1);

2
(5) y’: 1 -(’\Il_xz) = 1 .l'(l_x ) =
1_(@)2 J1=(1-x) 241-x?
_ 1 _ —-2x __ X (x5 0)
\/x_2 24/1-x° |x|~\/1—x2 .
(6.) y':51n4(tg3x)-[ln(tg3x)]'=5ln4(tg3x)-t 13 -(tg?)x)’:
x
1 1 ' 1 In*(tg3x)
=5In*(tg3x)- —— ———-(3x) =15In*(tg3x)- =30 .
" (tg x) tg3x cos’3x ( x) " (tg x) sin3x-cos3x sin 6x

(7.) y'=2sin " !

- X

2

-| sin =2sin - cos A f— =
[ l—x} 1—x 1—x 1—x

C1(1-x)
21-x . 2 1

=sin

1

= e

!

(8) y'=

2x

1-

1+ x?

( 2x j _ 1 21+ x?)-2x2x
jz L+ x? - 4x* <1+)c2)2
(1+xz)2
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i 1 2420 -4 ofl-2?) 0 2(-x7)

(+xf 4 (2] Ji=ef (ex) =205

(1 +x° )2
2
T x| <1
ie. y'= ) (for |x] = 1 derivation does not exist).
— -~ za |x| >1,
I+ x

Exercices 6.5

2 2

Find the derivative f(x): e -arcsine +lln(1—e’2xz )
1_ e—sz 2
Solution:
e (=2x)arcsine™ +e e ) |—e2
’ 1_ —2x7
1) - _
l1-e
5 e (4)

e’ -arcsine™ - . L
2 l—e_zx 1 e -(—4x)

—x? . _y2 _oy2 232
7 )_—erx -arcsine”™ -Nl—-e ™" —2xe” " N
2

1 _ e—2x

1
352 L2 22 5 o2
—2xe>" -arcsine™” (l—e * )2+2xe *

1 _ e—2x2

1 - e—2x2 — eizxZ
—_ 2 . —_ 2 - —_
—2xe ™™ -arcsine™ 1-e?" +e7*
1 _ e—2x2 1 _ 372x2 ’

That is,
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42 . 2
2xe ™ -arcsine "

/'(x)== ;

(1 e )5

Exercices 6.6

Prove that the function y = _ meets the equation xy' = y(ylnx— 1).
l+x+Inx

Solution:

s o _(lJr)lcj —(x+1)

= = ,thisresultsin x-y'=
Y (Il+x+mx)  x(1+x+nx) Y

—(x+1)
(I+x+Inx) '

The right side of the given equation is

1 Inx Imx—-1-x-Inx —(x+1)
Inx-1)= 1|= = )
yinx=1) [ ) (1+x+mnx) (1+x+nx)

l+x+/nx 1+x+lnx_

As the equivalences on the right side are the same, this means that the function y meets the
given equation.

6.2 Logarithmic derivative

The function having the form y = [f(x)]g(x), f(x) > 0 has to be turned into a logarithm before

derivation, i.e.

Iny= g(x)-ln f(x). We can now derivate it:

(in y)’ = g'(x)-In f(x)+ g(x)-[in f(x)] " thatis:
=g ()i () gl

fzx).f’(x) so we get:

Co-funded by the
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y’=y-{g'(x)'1nf(x)

:I:f(x):lgm '|:g'(x)'1nf(x)+w:|

Note: The same formula is achieved by using the identity [f(x)]g(x) = eg(x)'l”f(’“),f(x) >0.
Namely, through the process of derivation, we get:

= (U = e [l g (5] s0 e have

!

= = . g'(x)-In x+_g(x)'f'(x)
y =AU ) =Y {g()l /(%) o) }
Example

Define the derivative:

(1.) f(x):(cosx)Si”x; (2) f(x):(2+%j .

Solution:

(1.)From f(x)=(cosx)™" by using logarithm, we get:

In f(x) = sinx-In(cos x), so that:

L £(x)=(sin x)’ - In(cos x) + sin x -

£(x) cos x

(cos x)’, that is:

£'(x)=(cos x)™* -[cos xIn(cos x)—tgx - sinx] .

(2.)1z f(x):(2+ljx = lnf(x):3xln(2+—j;
x
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ro-(zey) [l 2]

Note: The use of logarithms can considerably facilitate the derivation of some rational
functions, which can be observed in the following examples.

Find the derivative:

X Jx-1
(1) f(x)zx-,z/x2+l,- ) g(x)=v(x+2)2_ﬂx+3)3.

Solution:

2
we achieve:

(1.) Through the logarithm f(x)=x-3 >
x”+1

lnf(x):lnx+§lnx—%ln(x2 +1). So that now:

1 2 1-2x

f(x)'f’(x):;-l-g—m, thatis:

F(6)=x3 (12 2x || x7 3x'+5
allx 3x 302 +1)] Va?+1 30 +1)
(2.) Through the logarithm g(x) = -1 we achieve:

Ve 27 i)

In g(x)=%ln(x —1)—%1}1(}5 + 2)—%ln(x +3), so that:

. x-1 123

Jor2y Jreay 261 3(x+2) 2(x+3)]
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6.3 Derivation of the implicitly given function

Let F be the function of two independent variables x and y. Then, if the limits exist,

G_F_ lim F(x+Ax,y)—F(x,y)
ax Ax—0 Ax
constant). Analogously,

is called the partial derivative F by x (here, y is considered a

a_F: lim F(x’y+Ay)_F(x’y)

Gy Ay—0 Ay
constant).

is called the partial derivative F by y (here, x is considered a

The rules for partial derivations (for all &, # € R and functions F and G for which the indicated
derivations exist):

d oF G 0 oF 0G
—(aF + pG)=a—+ f—; —aF+ pG)=a—+ f—;
ax( £G) a@x ﬂ@x 8y( p ) oy ﬂ@y
i(F-G):6—FG+1«“6—G; i(F-G):a—Fc;+,f76—G;
Ox Ox ox oy oy oy

OF o 06 OF ;oG
i(ﬂj:—ﬁx & (G=0); ﬁ(ﬂj:—ay Y (G=0).
ox\ G G v\ G G’

There is an interval I < R having the point X, and there is a unique function f:I - R , as

here:
(1) f(xo)ZJ’oJ
(2.) F(x,f(x))=0 Vxel;

(3.) f has a derivative f' at every point x € I . In addition, it is valid that:

oF

’ a(xo’J/o)
f (XO): _aFv—‘
ai(xoayo)
Y
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Note: If the function y=f(x) is given in an implicit form, i.e. through the equation

F(x,y)= 0 and if f is a derivable at the point x, then its derivation at that point can also be

found in the following way:

1. deriving both sides of the equation F(x,y) =0 (by variable x) taking into consideration
that y is the function of x andthat y’ is derivation of y by x (because y is a function

of x),

2. the obtained equation diF(x,y): 0 is solved by y'.
X

Define the values of partial derivations at the point T(—2, 1) of the given functions:

(1.) F(x,y) =7x —4x°y* + 7 (2.) F(X,y)z Inyx*+3?;

Solution:

(1.)  For F(x,y): 3x’ +x%y* =27 it follows that

a—F:21x2 —8xy2 (v is considered a constant),

ox

aa—F:—8x2y+2y (x is considered a constant).

By inserting:
F
a—F(—z, 1)=21-4-8-(-2)-1=100=  and a—(—2, 1)=-8-4-1+2-1=-30=
ox oy

(2.) If F(x,y) =1In+/x* +y?, then

oF_ 1 12x _ x L F 2
o P4yt 2yt X HY ox 5
oF 1 1-2y y oF 1
Lailge : - = Z(21)=2.
oy \/x2+y2 2\/xz+y2 x4y 8y( ) 5
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Find the derivative y = f(x) that is given implicitly 8x =3y +7=0.

Solution:

Therefore, F(x,y)=8x—-3y+7, so that:

8—F=8, and a—F=—3,
Ox oy
oF
o g ox _—8_8
y= 1)L 23S
oy

Yy

Find the derivation of the implicitly given function Inx+ e * =C intwo ways.

Solution:
y
From F(x,y)=Inx+e * —C the result s:
1 _y -
a—F:—+e’“~lz; and 6—F=e)‘-(—lj,sothat
ox Xx X oy X
Y
oF xX+y-e? oy
' ' Ox x’ X+ye* Ly
= = — = — = = x_+___
Y= Sl e X
5 -——e " xe *
X
I. Given:
y d
Inx+e * =C, —
dx
Y
l+ x d(_ZJzo,
X dx\ x
< —yx+y
—+e *- > =0, - x?
X X

x+e *(y-yx)=0,
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B B
x+ye*=yx-e~,

Y atthe point 7'(-1,2).

Find the derivative F(x,y) =— 3

x°+y
Solution:

0 0
aF_(x2+y2)ax(x'y)_xyx(x2+y2)_y(x2+y2)—xy~2x_
o (x2+y2)2 - (x2+y2) )
=yy2_x2 a_F(_lz): 2[22_(_1)2]:£

(¢ +2f O cpe2] B8
oF _alx?+y?)-xp2y _alx®-y?) OF .3
ay_ (x2+y2)2 _(x2+y2)2 = Gy( 1’2)_25.
o 6
y':f’(x):—g—;:—%:—l
o 25

Exercices 6.7

Find the derivations of the implicit functions:
(1.) x° +x2y+y2 =0;

(2)y° =",
X+y

(3.)xy= arctgi
y

Solution:
(1.)  From F(x,y):x3+xzy+y2 it follows that Z—F::&xz +2xy; 8_F:x2 +2y, so
X
that:
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(2.)  From F(x,y)zy3 27 it follows that

h+h/Cl 2019-1-HR01-KA203-061000
oF
, , Ox 3x% +2xy
x)=fx)=- =— .
)= )G — 2
oy

X+
oF —(x+y)+(x-y) 2y
“ : =— > and
Ox (x+y) (x+y)
8_F=3y2_—(x+y)_(;€_J’):3yz+ 2 :3y2(X+y)22+2x'sothat
oy (x+y) (x+) (x+)
oF —2y
—_— 2
! ! 2
B ey e

oF 3y2(x+y)2 +2x - 3y2(x+y)2 +2x

¥ )

From F(x,y) =Xy — arctgi it follows that
y

8F_ . 1 'l_ y _y3+x2y—y and
6__y 2 - 2 2 2 2
X A y o+x yo+x

y2
oF 1 - X X xp® +x0 +x
a—=x— S =X+t — 5= 5 5 , So that
y A yo+x y o+x

y2

oF

7 3 2 2 2
(N (e Ox _ YV +Xy—y y 1-x"-y
y(x) f(x) oF 0+ +x  x 1+x2+y2.
oy
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6.4 Derivation of the parametrically given function

The trail of a material point T moving across the plane is the curve, for example: line, parabola,
ellipse, hyperbola, cosine wave, etc. Each point T can be observed as a vessel sailing along a
path (curve). When describing such a movement, it is necessary to know the point coordinates
as the function of time, at each moment ¢. If we mark x = go(t) and y = l//(t) as the coordinates
of the point T where @ and i are the real functions determined at the interval / during which
the movement occurs, it is clear that @ and y are derivable functions, because the speed is

given by v(t)zx/[gz)'(t)]2 +[l//'(t)]2 . Hence, when time t describes the interval I < R, then the
point T(p(t)w(t)) passes at least once through each point of the set, that is

K ={(ple)y(0):te 1},

Parametric equations of the curve (t is called the parameter) are expressed as:

{x = (1)

y=y(t) tel

y=y(t)

0 X

If @ is strictly monotonous by I (we know that there is an inverse function ¢t=¢™' (x)), then,
by replacing the variable t by (ofl(x) we get y=w(t) = w[o(x)] =f (x).

According to the composition derivation, it follows that:

Yx)= 06)=w o™ ()l ()] =y (o). thatis 1 “%

We can use a simpler way:

o (1)

, (N Ay g V't

y(x)_f(x)_dx_ dx x'(t)
dt
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It is easily proven that:

Find the derivative f at the point xo = 3, which is a parametrically given by formulas:
x=2t-1
y=rt

Solution:
First we determine ¢, with the corresponding value x, =3. From x=2t-1=1t :xTH, SO
that x, =3; toz%zz.

Now, let us find ¢'(¢) and y'(¢):

0'(=x(t)=2 and w'(t)=y'(t)=3¢".

' 2
By using the formula, it follows that f()q)): W,Ef’;, thatis: 1'(3)= 3t2° = 6. Therefore,
(2 =2
oF
'~ piy)=—0x 88
e
0y

Find f'(x) and f”"(x) for the function y = f(x), which is a parametrically given by formulas:

{x =e' cost,

y=e'sint.

Solution:
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_y'(¢) e'sint+e' cost sint+cost
Y= == — = e
X ) e cost—e sint cost—sint

!(t
(X (2) " (1)=x"(2) ¥ (2)
Y(n- )
TP

~ (e’ cost—e' sint)e' sint+e' cost+e' cost—e' sint)

(e‘ cost—e' sin t)3

(et cost—e' sint—e' sint—e' cost)e' sint+e' cost)_

(e’ cost—e' sin t)3

_e (cost —sint)2e' cost +2e" sint-e' (sint + cost)
(et )3 (cost —sint)’

262t[COS2t—Sil’ltCOSl‘-I—Sil’lzl‘—l—Sil’llCOSl‘]_ 2

e’ -e'(cost —sint)’ e'(cost —sint)

Exercices 6.8

x(t)= a[ln tg% +cost —sin t),

Find y'(x) if
y(t) = a(sin t+cos t).
Solution:
_ y'(¢) _ a(cost —sint) _ cost—sint
¥ (%) (0) 1 '
1 1 1 —t —sint —cost
a— -——sint —cost s
th cos’ 5
sin t(cost —sin t) _ sin t(cost —sin t) _ sin t(cost —sin t)

:1 ) . = 2 . = ; =gt
—Sin" t—sintcost cos”t—sintcost cost(cost—smt)

Exercices 6.9

Find the coefficient of the tangent direction in the graph of a function that is parametrically
given:
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x(t)=tIne,
§) =1t
4 at the point £, =1.
Solution:
1~t—lnt l—1Int
As y(f)=L —=—73—,and x'(t)=Int+1,
t t

It follows that y/(x)= ;/8 = tzl(l;ltn:l)

, so that

1-Inl

1Q=}/(X)1t0:1 =m=1-

Exercices 6.10
Find y'(x) for the parametrically given function:
1

t2

x(t) = arccos
1

=+

y(t) = arcsin

N
Solution:
Since:
Vil -t
() E— Viee _Niefier-2) 1
A 1+7 (1 tz)% 1+¢°
I "

t
/\/(f)—— 1 ' V1+¢£2 _ \/1+l‘2 . t _ t '
L e e (e N e[ e

IR
1
We obtain y'(x)zy(’)z 1+¢° =H={1 zat>0'
X)) ¢ 1t |-1 zat<0
| 1+

Exercices 6.11
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Find another derivative for y"(x):

x(¢)= a(sint —tcost), x(t)=acos*t,
(1.) (2.)
y(z‘) = a(cost +1sin t),

Solution:
(1.) X(¢)=alcost — cost —t(- sint)| = at sint,
H¢)=a[-sint +sint +tcost]= at cost .

y'(¢) _ atcost

So that y’(X): )

= ctgt . It follows that:

atsint
droy - Lo
)/,(X):dt[y (x)] __sin’t _ _ 1 .
x'(t) at sint atsin’ t

(2.) X’(t)=3a cos’ t(— sin t),
#¢)=3asin’ t(cos t).

Sothat y'(x)= y() _ st _ —tgt . It follows that
x'(t)  cost
d:, o
E L A
x'(t) —3acos’ tsint  3acos” tsint

Exercices 6.12

Prove that the function y = f(x), given parametrically

— 2
{;8; fzt:;; satisfies the equation 2(y’)3 N (y')z _y=0, [y' _ d—yj

Solution:

}/_Q/: H) 2t+68 ;

Cdx X(f)  2+6¢

If y' is inserted into the equation 2(y')’ +(y')* =y = 0, we obtain

20 +17 (7 +21°)=0
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6.5 The tangent and the normal in the graph of a function

Let a curve be defined by the formula y = f(x) , where f is a derivable function. The curve
secant y = f(x) passing through the points (xo,f(xo)) i (x,f(x)), where x, # x, is the line
S ()= /(%)

with coefficient tgp =——+———=.
X=X,

When x—>X,, then the secant line tends to the curve tangent y= f(x) at the point
(xo,f(xo)), whose coefficient of direction is equal to #g¢,. Obviously, it is valid that:
x = x, = tgp —>1gp, = f'(x,). Therefore:

the equation of the tangent in the graph of function y = f(x) at the point 7, (xm)’o), where
Yo :f(xo), a f’(XO)Zk eR,is:

y_f(xo):f,(xo)(x_xo)i

while the equation of the normal (perpendicular on the tangent) at that point is:

1
y_f(xo):_f,(xo)(x_xo)-

Yo=Ff(xo)

The angle ¢ at which the graphs of the functions y, = f;(x) and y, = f,(x) intersect at the

point 7, (xo,yo) is the angle between their tangents at that point, and is calculated according

to the formula:
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_ _ _ 189, — 189, _ fz,(xo)_fl'(xo)
90 =180 =0 = o Tt ). £

This is the angle that we need to rotate the tangent ¢, of the function f, in the positive direction
(counter-clockwise) around their mutual point, so that it could be aligned with the tangent ¢,

of the function f, (see the figure).

A

Y

A\

Example

Find the equation of the tangent and the normal in the graph of function f(X) =x -3x+2 at

a point whose abscissais x, =2.

Solution:

If we insert x, =2 into the formula by which the function is given, we get the ordinate of the
point Ty, thatis y, = f(xo) = f(2)= 4. Now we look for the equation of the tangent and the
normal at the point T0(2,4). We can find the derivative at the pointx, =2:

fx)=3x"-3 = f(2)=9.

Equation of the tangent: y—4=9(x-2) or

O9x-y—-14=0.
Equation of the normal: y—4 :—é(x— 2) or
x+9y-38=0.
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Find the equation of the tangent in the graph of function f(x)zx2 —3x+1 which passes
through the point T (2,—2). Find the coordinates of the contact.

Solution:

If the contact D(xl,yl) of the tangent in the graph of function f, its coordinates are
(xl,xl2 -3x, +l). Furthermore, f'(x)=2x-3 and k, =2x, —3. On the other hand,

kXX X12—3X1 +1+2

t =

=2x -3, thatis
X =X X =2

-3
%0 =3x+3=(2x -3 5 -2)= x” -4x +3=0:>{(X1)1 ;

For (x,), =3=y,=f03)=1=D/(3,1)= £, =3.

For (x1)2 ==y :f(1)=—1:>D2(1,—1):> kzz =—1.

Hence, there are two tangents:

t,:y-1=3(x-3)= y-3x+8=0 and

Liy+l==1(x-1)= y=-x.

Example 3

2
Find the angle at which the functions y =4 ~% and y =4 —Xx intersect.

Solution:

The angle ¢ at which the graphs of functions f, and f, intersect at the intersection point
M(Xl, y]) is calculated through the well-known formula

tgp = f (xrl)_fl,(xl) _
1+, (xl)fz (xl)
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The intersection points of the given functions are obtained by solving the system of equations:

_ X =0 =4
y=4-— — X S 4 )
X, =2, y,=2,

We obtain the angle at the point M1(0,4) by inserting the point into fll(x)=—x and

fzr(x)=—1; so that f1,(0)=0 and f2'(0)=—1. Therefore, fgp, = 5 (O)_ ! O) :—l

f!
1+ £(0) 4(0) 1

=—1= ¢, =135°.
Analogously, we obtain the angle at the point M, (2, 2). Let ¢, be the equation of the line, and

t, equation of the tangent at the point M, through the function y=4—7, that is

! !’ ! !

fl(x)=—1 and Ig(X)=—XZ so that £(2)=-1 and f2(2)=—2. Therefore,

tgol, = £2)-£@) -2+ =—% = . o, =161°33'54"

1+7 )£ () 1+(1)(-2)

Exercices 6.13

Find the equations of the tangent and the normal in the functions with given points:

(1. f(x): 2x* —x+5 at the point T{—%ﬁj;

(2.) f(x)z x* +2x* —4x -3 at the point TO(— 2,5);
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(3.) f(x)=3/x—1 at the point with the abscissa x, =1.
Solution:

(1.) f(x): 2x* —x+5 ;T{—%ﬁj. Find the derivative at the point x, :—%:
f(x)=4x-1= f’(——}z—&

The equation of the tangent through the point T} (xo,f(xo )) has a typical form:

Y- f(XO): f(XO )(X— XO), so that, for the given function, the equation of the tangent

y—6:—3[x+%j or 2y+6x-9=0.

The equation of the normal through the point T} (xo,f(x0 )) has the form:

(x—xo), so that

y_f(xo):_f,(xo)

y—6= (x+%j or 6y—-2x-37=0.

2)  flx)=x'+2x* —4x-3; T,(-2,5).

£(x)=3x +4x-4= ['(-2)=0.

The equation of the tangentis y —5 =0, while the equation of the normalis x+2=0.

Note: if f'(xo)z 0 then the equation of the tangent y = f(xo)(th/'s is a line parallel to the x-

axis passing through the point T (xo,f(xo )), and the equation of the normal is X = X,,.

(3.)  f(x)=3/x—-1 atthe point with the abscissa x, =1.
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Since Yy, :f(xo):O, we should find the equation of the tangent and the normal passing

through the point T (l, O). The derivative f(x) =3/x—1 atthe point x, =1 is

()= R - = f'(xo): f'(l) does not exist, that is
3-3(X—1Y
f’(l): limf'(x): lim; —w.

The equation of the tangentis x —1=0 and the normal y =0.

Note: if f'(x,)—> when x— 1, then the equation of the normal is y— f(x,)=0 and the

tangentis x—x, =0.

Exercices 6.14

2

Define the intersection of the tangents on the curve y = at the points for which y =1.

3+ x?

Solution:

The conditions of the task imply that

1+3x?
3+ x?

=1= x? :1:{ i ll,that is Tl(—l,l) and Tz(l,l).

Xy =—

X .
- it follows

Let us find the values of the derivative at the points 7, and T,. From y'(x)= ( 2)
3+x

that
k =y'(-1)=-1; k, = y'(1)=1, so that
t,:y—1==1(x+1)= y =—x, and
t,:y—l=1(x-1)=y=x.

Therefore, the intersection of the tangents on the given curve is S(0,0).

Exercices 6.15

Find the equation of the normal in the graph of function f(x) = xInx which is parallel to the
line 2x-3y+3=0.
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Solution:
In order to achieve that the normal in the graph of the given function in X, is parallel to the

line p, it must be valid that ](p = ——), where kp is the coefficient of the line p direction.

(x
From the given derivative, it follows that

f'(x)zl-lnx+x-l:1nx+1,and
X

f(x,)=Inx, +1.

From y:§x+1:>kp =§:sothat

1 2 5 3
- =—=2lnx,+2="[=hx,=——=x,=¢ 2.
Inx, +1 2

5 5 5
Since y, =f(x0)=f(e 2J=e ?-lne ? =—%e 2, the graph of the given function has a

5
normal parallel to the line 2x—-3y+3 =0 at the point 7;| e 2,—

— |, hence the equation of
2e?

the required normal is:

222 x—e% or y=2x— 2
Y 3 Y73 '

S 5
2e? 6e?

Exercices 6.16

In the graph of the function f(x)z x> =2x+5 find the point at which the tangent is vertical
to theline y =x.

Solution:

In order to achieve that the tangent in the graph of the given function in x, is vertical to the

1
line p, it must be valid that f"(x,) = T where k, is the coefficient of the line p direction.
p

From the derivative of the given function f’(x)=2x -2 it follows that f'(xo)z 2x,-2.

From y = x it follows that kp =1, therefore 2x,-2=-1=x, = %
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2
Since y, =f(x0)=f(%j=(%j —2%+5=1T7, the graph of the given function has the

11
tangent vertical to the line y =x atthe point TO[E%)

Exercices 6.17,

1
Find the angle at which the graph of the function f(x) = arctg(l + —j intersects the x-axis.
X

Solution:

The angle at which the graph of function f intersects the x-axis is the angle the tangent at that
point makes with the positive direction of the x-axis. The desired angle ¢ is obtained as a

solution to the trigonometric equation f'(x0)= k, =tgp, where x, is the zero of the function

f.

X, is obtained by solving the equation

arctg(l+lj:O:>1+l:O:>x0 =-1.
x

We know that

f'(x):H(liiT '(_xizjz_xu(iﬂ)fs“hat
fg)=f1=1)=-1.
3n

It follows that tgp=-1=0¢= i

Exercices 6.18

Find the equations of the tangent and the normal at the point T(l, 1) on the graph of the
function that is implicitly given by the equation x4 y5 -xy—-1=0.

Solution:

If we denote F(x,y) =x"+y° —xy—1, then F(l,l)z 0 and

oF
) = 5)/4

& - x‘ o =4#0,sothat
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oF
Fle)= 2 =2 o )=
OF  5y*—x '
oy

Therefore, the equation of the tangentis: y—1= —l(x ~1) or y+x-2=0.

The equation of the normal: y—l:—il(x—l) or y—x=0.

Exercices 6.19

At which point of the parabola y = x> =2x-3 the tangent makes identical angles on the both
sides of the coordinate axis?

Solution:
Assume there is a general function y = f(x), then, as required by the task, tg a=tg .

Since the value of the angle that the tangent makes with the axis x is equal to y'(x), and the

value of the angle that the same tangent makes with the axis y is equal to x'(y), then
()= x"(y).

From y=x"-2x-3 = y(x)=2x-2.

In order to find x'(y), we mark F(x,y)=x* —2x—y -3 Since

a_Fzzx_z and a—F:—l,itfollowsthat
Ox
oF
(. o -1 1
¥0)= OF ~ 2x-2 2x-2
ox

By insertion, we get

1

2x-2

2x-2= = (2x-2)’ =1, so that

2x-2=*x1=x :% and x, ==

Since:

)=z )= e sle)sf3)-1,

2 4 2 4

these are the required points:
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1 1 1
T —,——5 and T, i,——s .
24 2 4

Exercices 6.20

Find the equation of the tangent and the normal on the parametrically given curve:

x(t)= In(cost)+1,

I
y(t) = 1gt+ctgt, u t,= Z

Solution:

For the parameter value ¢, =Z it follows that
7z T V2
x =xt,)=x—|=Incos—+1=In—+1, and
=)= A = tnoos” 411
T r r
=NL)=)—|=tg—+tcig—=1+1=2.
¥ = At,) }(4] g +eles

We need to define the equation of the tangent and the normal at the point T{Zn£+ 1, 2} :

Since:
LR
, _J”(fo)_ cos’t sin’t _ , _
y(x)_x,(to)— _Sil’lt —O,that IS, kt —0,
cost ,O%

the tangent is parallel to the x-axis, while the normal is parallel to the y-axis Y at the point T},
so that

t: y—-2=0=y=2,and

V2

n: x—ln——l:O:x:ln£+l.
2 2

Exercices 6.21]

Find the equation of the tangent and the normal at the point (0, 0) on the parametrically given
curve:
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x(t)=tint,
y)="1,
t
Solution:

x, =x(t,)=0= t,Int, =0

Y —y(t )— (= Int, =0 =t, =1 (parameter ¢, =0 is not from the domain of
0~ o) — =

tO
the given functions and is not taken into consideration).

1-Int
k = ! x = = 1_
=2 )|‘°=‘ 2 (1+1nt)],
Now it is easy to obtain that the equation of the required tangentis y = x, while the equation

of the normalis y=-x.
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6.6 Application of derivations in determining the limit of functions

A typical requirement in determining the limit value or the limit of a function is set, when
x—>ceR orwhen x — #wo , whenthe functionis given in the form of a product or a quotient
of two functions fand g. However, the result is often a product that is not defined, and to which
already known theorems on the limit values of functions cannot be applied. The extension of
the rules was given by G.F.A. de L'Hospital, therefore it is often said that when determining the

.. . . . 0 o "
limits of functions of indeterminate forms of type: 6, —,0-0, w—00, 0°, 1, ©’so called
o.0]

the L 'Hospital's Rule is applied.

Note: The indeterminate forms of type % and = are solved by L'Hospital's rule, and other
o0

indeterminate forms are reduced to one of these two forms using appropriate transformations.

Theorem (L'Hospital's Rule):

If fand g are derivable functions around the point ¢ € R where lim f(x)=1limg(x)=0. If

limM =L e R, then limM and also
X—>C g (x) X—>C g(x)
tim 2 ) _ i/ :(x).
X—>C g(x) X—>C g (x)
R . . . , 7'(c)
In particular, if f"and g'are continuous functions at point cand g (c);t 0,then L= '( ) .
g'\c

Note:

[00)
i) L'Hospital's rule can be applied when x — +o0, for the indeterminate form — and for limits
Q0

and left-hand and right-hand derivatives.

ii) L'Hospital's rule can be applied several times in succession if one of the indeterminate

.0 00
formsis — or — .
o0
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Find limits:
Tx
(1) lim &0, (2 lim |
x—0 3x X0y
Solution:
7x e +10 7x
(1) lim® ”O:P} iml ,) —lim2 =7,
x—0 3x 0 x—0 (3X) x=0 3 3
1
| -
(2.)1 lnzx_‘:z}_lm(nx) =lim-X =lim 12 =[l}:0
x>0 x 0 X0 (xz) xoo Dy x>0 Dy 00
Example
Find limits:
. 2
(1)1 X s}mx; 2) limln X
x—0 X x>y
Solution:
— - _ 1—
0 i8] i ) seor O]y (e
AR

x>0 x X—>0 (X) x—® 1 x>0 0
S
=2lim(lnx,) =2lim< 9=0.
x—>0 (X) x—o | 1

e Forthe indeterminate form0-o0 the following transformation is used

lim(FG) - 9() = 1m L or im0 - 9(0) = 1im L
g0 &)
And is reduced to the form 9 or f.
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Example 3
Find limits:
(1.) }g}} xlnx; (2.). %Ci_r)rg(ln(l—sinx)ftgx)
Solution:
()
. . Inx |- . (Inx) .. .
b1 tip(otn) =[0-(=)) = tip =] 2| = i (S i~ () =0
X ¥ x
s . In(1—si
(2.) £i£13(1n(1—sinx)-ctgx):[0-00] :%%M:{%_Zﬁ%(n( lsmx)) _
ctgx ctgx}
1, '(l—sinx)' —co'sx 3 1
— liml=sinx __ = lim =X _jjy 290 T
10 (tgx) -0 1 0] —-sinx 1
cos’ x

e fortheindeterminate form oo —oo an appropriate transformation is used in the
following way

i) in order to exclude one member, the form is reduced to the indeterminate form
0 o0
0-00, and thento — or —;
o0
ii) in order to reduce the form to the common denominator, it is directly reduced
0 o0
to — or —.
o0
Find limits:
. 1 1
(1) im| xe* —x |; (2.) Iim - .
x>0 =2 x+2 ln(x+3)
Solution:
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1 1 X
lim[xex —x} =[o0—0]= limx[e" —IJ =[0-0] = lim & 1 :[g} =

1
x

(1.) 1 - ;
e~ —1 —726)6 | hml
: X

=lim < =lim =lime* =¥ =¢’ =1
X—>0 1 X—>0 1 X—>®0
X
. 1 1 the expression is reduced here
(2.) lim [—— = [eo — o] = : —
x——2Lx+2  In(x+3) to a common denominator

1
_ .mln(x+3)—x—2=[9}=hm x+3_1 _
x—>-2 (x+2)ln(x+3) 0 Hizln( +3)+X+2
x+3
-— lim x+2 —{9}——hm : S
— o2 (x4 3)In(x+3)+(x+2) |0 e+ 3)+ 3., 2
x+3

e Indeterminate forms of type 1°, 0°, «” are reduced to the indeterminate form 0-o
using prior logarithmation or using the identity:

[ f(x)]g(") = W/ (x) f(x) >0.

Find limits:
1 ig
1.) 1 2 x); 2) Ii o 3.) lim (zgx)™".
(1) lim(e™ +x) (2. lim x (3) lim, (zgx)
)
Solution:

(1)

1 1 2x
lirr(l)(ezx +x)x = [17] = exlbx m(e*4x) _ el, where
X—
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- Im(e®*+x) [0 _ - o i,
L= }Cl_l‘)r(l)f— [6] —}Cl_r)r(l)er_l_x(Ze +1)=3. Now }Clil(l)(e +x)x =e" =e>
li 1
(2.) lim x* =[0°] = pxbpbo ) ek, where
x—010
l 1
_ . _ . _ . nx _ i _ . E _ . x _ L _ .0
L= xl_l)grlo(x Inx)=[0-00] = x1—1>10110_1 = Lo] = xl_l)gr}ro—_i = 0. Nowxl_l)gr}rox =el=e¢e
X x?
= 1;
(3.)
lim_0 ctgx-In(tgx)
lim (tgx)°t9* = [°] = e*72 = e!, where
x—%
. _In(tgx) o
L= 117rTr10[ctgx In(tgx)] =[0- o] = 117rrrlo tgx [;] =
x—>§ x_)f
1 1
7 2
= lim 9% CO5°X _ i ctgx = 0.Now lim (tgx)°t9* = el =% =1.
=0 1 0 0
X—>7 m x—>7 x—>7
Exercices 6.22
Find limits:
e’ -1 . X—sinx
(1.) im ; (2.) Im———;
=0 2x x—0 )C3
. In*x . e
(3.) lim ; (4.) im—;
X—>00 x X—>0 x
- )
, —areigx (6) lim T Jx
(5.) im&=——; 0" 2 x — x?
oo ] x+1
3 x-1
The solution:

S5x S5x Sx
1) lim 1:{%}:1111(@ U tim2¢ :%

(2.) lim X =57 _ {%} — lim (x —Sin x) — lim 1-cosx _ {9} —lim (1 —cos x)
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2 2 ' 2Inx-—
@) lim™ x:[f}z im(ln ’f) = lim X =2liml”_x:[f}
X0y 0 x—00 ()C) x—00 1 x>0 X o0
/ 1
-211m(ln ,) =2lim< —9= ;
x—>0 (X) x%ool 1

@) 1im< ={£}:lim (e) — lim exz :F}:n e ,:ﬁmﬁz[f}

Ve T 1
= —arctgx (—arctng — 3(x -1
(5) 1im2—=H O 2 A B ) | {2}:
X—>0 1IHLH 0 X—o 11 yal xom 2 xﬁwz(x2+1) 0
—In——- 2
3 x-1 (3 nx_lj 3(x*-1)
=lim——4— [3( )] im6—x = {2}= lim@ =§ = 3;
x—>0 [2( )] xoo 4x o x>0 (4X) 4 2
. arcsin/x [0 \/ﬁ 2\/— 2\/_ \/ﬁ
(6.) lim —————=|—| = lim = lim
-0 \2x—x? 0 ac M N et
242x —x Vx2-x
_ lim —Y2=% N2
x—0* 2(1_x) 1—x 2
Exercices 6.23
Find limits:
In(1 _
(1.) lim[l— n( ;Lx)}; (2.) lim[arcsinx a-ctg(x—a)]
x>0 x X x—a a
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The solution:
_ 1 1
In(1+ —In(1+ -
(1) tim| L - 2+) zlimw |9 ctim—xtl gy L
x—0 _x X x—0 X 0 x—0 2x t—0 2)6(1 + X) 2
. X—
- —a arcsin
(2.) lim| arcsin -ctg(x—a)}=[0-oo] =lim————4% =
x~>a_ a x—a tg(x_a)
1 1
x—a) ¢
0 1= a 1 cos’ (x—a)
:{—} =1lim I =—-lim—2=—
0 x—a a oo 1_()5—51) a
cos (x—a) P
Exercices 6.24
Find limits:
11 In(l+x . L oX—
(1.) hm[——#}; (2.) hm[arcsmx 4 -ctg(x—a)]
x>0 x X x—a a
The solution:
_ 1 1
In(1+ —In(1+ N
(1 tim| LU | wo (o) FO) et gy X L
x—0 _x X x—0 X 0 x—0 X t—0 2x(1 + x) 2
= —a arcsin ——
(2.) lim| arcsin -ctg(x—a)}:[o-oo] =lim————4% =
x—m_ a x—a tg(x_a)
1 1

Exercices 6.25

Find limits:

. 1 1
(1) lim| —-—" | (2.) hm( : ——Zj;
7\ clgx 2cosx =0\ xsinx x
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(3.) lim [Lz - ctgzxj .

x>0\ x

The solution:

. [ xsinx T . 2xsinx—-m |0
(1)  lim - =[ow—o0] =lim=———=|—|=
H% cosx 2cosx H% 2cosx 0
. 2sinx+2xcosx 2
=lim : =—=-1.
x_,g 2(—smx) -2
) 1 1 . x—-sinx |0
(2)  lim| ———— |=[0-o] =lim———"F=|=|=
=0\ xsinx X x>0 x“s8inx 0
. 1—cosx 0 . Sinx
=lim . > =|—|=lim— ——— =
=0 2xsinx+x"cosx [ 0] 02sinx+2xcosx+2xcosx+x (—sznx)
) sinx 0
=1lm ; 7 . =|—|=
=02 sinx+4xcos x —x° sinx 0
) cos X 1
=lim - - > =—.
0 2 cos x + 4 cos x + 4x(—sinx) - 2xsinx — x> cosx 6
) 1 . 1=x’cte’x
(3)  lim| 5 —ctg’x |=[oo—o0] :llm—2g=
x—0 X x—0 X
. sinx—x’cos’x . (sinx —Xxcos x)(sinx + xcos x)
=lim — =lim — . ;
x=0 xX°sin” x x=0 X sinx-sinx
Since
. Sinx—XxcosXx 0 . COSX—COSX+XSinx
hmz—_z — |=1lim - 5 =
=0 X sinx 0 =0 2xsinx+x° cosx
) Sinx 0 . CcOS X 1
=lim— =|—|=lim — =,
=0 2sinx+xcosx [ 0] 0 ZCosx+cosx+x(—smx) 3
and
. Sinx+Xxcosx 0 . COSX+cosx—XxSinx
lim———=| — |=1lim =2,
x>0 sSinx 0 x>0 cos X
itis

. (sinx—xcosx sin x + xcos x
lim — . - =
x>0 X smx sin x

. [ Sinx—Xxcosx . [ sinx+xcosx 2
=lim — -lim - =—.
x=0 x°sinx x>0 Sinx 3
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Exercices 6.26)

Find limits:

2 x
(1.) lim| —arccosx | ;
x>0\ 71

(6.) lim (ctgx)lnx;

x—0%0

(7.) limxln(ex_l);

x—0
(8.) lim(1+sin x)é :

x—0

The solution:

L
(1.) llm <3arccos()x[1 ]9135“ ln( arccosx) Where>

2
ln(arccos x) 0 5 5
L =lim—7% =2| =lim ” ] _ __Z.
x>0 X 0 0|\ 2arccos x 1= x2 T

1
. (2 PR
lim| —arccos | =e ~

x>0\ 71

1 sinx

. i X2 1 li l
(2.) lim (Slzx)x =[17] = elmE i el, where
X—
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In sin x X Xcosx—sinx
. 0 . siny 2
L =lim—FX—=|—| =lim31* X =
x—0 X x—0 Zx
- lim X limxcosx—sinx_hmxcosx—sinx 101
-0 ginx *—0 2x3 x—0 2x3 0
. cosx+x(— sinx)—cosx . Sinx 1
=lim 5 =—lim =——;
x—0 6x x>0 Hx 6
L 1
. (sinx \?  —
hm( )x =ef
x—0 X
X gﬂ li [t LE) (t E)]
(3.) lirri (th) 2 =[17] = ex1l 92 M)l = oL where
X—
X
In|tg—
. X X . 4 0
L=lim|tg——In| tg— ||=[0-0] =lim——
¥l 4 x>l X 0
ctg| —
2
1 1 T
X X
tg— cos® — 4 1 2sin® =
=lim 4 4 = (— —j -lim =
x>l 1 T 2 ) x>l . ™
- — 2sin—-cos—
sian 2
sin® —
= —lim =— lim(sin —j =-1;
x—1 x—l
sin—
X
rox )2
lim[tg—] =e
x—1 4
. . . _ li_)rri[tgx In(sinx)] .
(4.) lim(sinx)*9* = [17] = ™2 = e", where
xX-=
2
) ) . In(sinx 0
L =hm[tgx-ln(smx)]=[oo-0] =11mM— =
i T clgx 0
2 2
——-COS X
=lim 34X —lim|cos x - sinx]=0;
S ot
sin’® x
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lim(sin x)tgx =e’ =1
oz
2
_3 lim ——Inx
(5.) lig}ro xa+inx = [00] = ex—otot+iny " — ol \yhere
p g
3
3Inx 00 .
L = lim =|—| =lim X=3;
x—0*° 4 + ln X o0 x—0"0 1
X

3
lim x4t = e3
x—0"

lim [L ln(ctgx)] _

1
(6.) li{)rlo(ctgx)m = [000] = ex-otolinx el, where
X—

1 1
In et (_ in? j
n(ctgx) :[f} _ iy Cfex \ sinx

L= 1lim =
-0 Inx 0 x>0
X
) X ) 2x 0 ) 2
= - lim ———=—- lim — =|=|=—lim ———=-1;
x=0" cos x sin x =07 §in2x 0 =0 cos2x -2
L 1
i hx =¢
xlirggo (ctgx) r=e
(7.) lim xn*-0 = [0°] = lim eln(e*-0""" = ex-olin(e*-1) = el, where
x—0 x-0
1
Inx 00 - e'=1 |0 e’
lim =|—| =lim—2—=lim =|—|=1lim =1;
x—0 hl(ex _1) 0 x>0 @ =0 xe* 0 =0 ¥ 4 xe*
e -1
1
. e -1
lim x (1) =e' =¢e
x—0
1451 g
B +Sin x
1 1 [ in(1+sinx) Pj}) 1
X . Rl o X —In(1+sinx) l‘l‘}) - 1
(8.) hm(l+smx)x =[1 ] =lime* =e =e =e =e¢
x—0 x—0

6.7 Examining the flux and drawing a graph of a continuous real function

Examining the flux of a continuous real function f that is set analytically, i.e. by a formula,
consists of the following steps:

1. Area of definition (natural domain), parity and periodicity
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In order to determine the natural domain D, of a given function f itis necessary to know the

basic elementary functions and procedures for solving equations or inequations.

Definition (even, odd, and periodic function):
The function f is

a) even if

f(=x)=f(x) forall xeD,;

b) odd if
f(=x)==f(x) forall xe D,;

c) periodic if for some P# 0 forall xe D, is:

f(x+P)=f(x).
Definition (fundamental period of a function);

Suppose that the function f is periodic and ¢ denotes the smallest positive number so that
f(x+q)=f(x)forall xeD,.
Such a number ¢ is called the fundamental or basic period of the periodic function f.

If the domain Dy is determined, we examine whether the function f* is even, odd, or periodic.

This is useful to know because it can significantly help in further examination of the flux of a
function.
Namely, if the function f is an even function, then its graph is symmetric with respect to the

axis y therefore, it is sufficient to examine the flow of the function f only on the set
D, ﬂ[0,+oo>;
if the function f is an odd function, then its graph is centrally symmetric with respect to the
origin, so again it is sufficient to examine the flow of the function f only on the set
D, ﬂI:O,+oo>;
if the function £ is the periodic function with the fundamental period ¢, then itis sufficient to

examine the flow of the function f* only on the set D, ﬂ{—g 1}.

2°2

Important notes:
1) The function f* can be even or odd only if the set D, is symmetric with respect to zero.

2) The function f cannot be periodic unless it contains one of the trigonometric functions.

2. Intersections or touch points with coordinate axes

for the equation f(x) =0.

If x =x, is the solution of that equation, then N (x,,0) is a zero-point of the function f.

If the equation f(x) =0 has no solution, then the function f has no zero-point.
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The equation f(x) =0 can have multiple solutions, i.e. the function f can have multiple zeros

(there may even be an infinite number of them).

If 0e D,, and the value of f(0) is determined, then the point (O,f(O)) is the touch point or

intersection of the function f with an axis y.
If 0¢ D, then touch point does not exist.

3. Asymptote

Definition (asymptote):

If a € R the line x =a is the right vertical asymptote of the function f if
lin}of(x) = or lirgof(x) = —00,

The line x =a is the left vertical asymptote of the function f if

lim f(x)=00 or lim f(x)=-co.

X—)d

The line y =b is the right horizontal asymptote of the function f if
;i_{?of(x) =b€ER.

The line y =c is the left horizontal asymptote of the function f if
;1_{210 f(x) =c€eR.

If lim % =k, € R\{0}and lim[f(x) — k,x] = l; € R. Then
X—00 X—00

y=kx+I
is the right oblique asymptote of the function f.
It lim 9 = k, € R\{0} and li — mﬁ) = k, € R\{0} then
T v=kx+1,

is the left oblique asymptote of the function f.
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Important notes:
1) The function f can have a vertical asymptotex =a only ifa is a point at the edge of the

domain Df where the function is not defined.

2) The function f can have more (even infinitely many) vertical asymptotes.

3) The function f cannot have a horizonta/and an oblique asymptote on the same side of the
graph.

Therefore, the function f* cannot have

the right horizontal and right oblique
or
the left horizontal and left oblique asymptote.

However, the function f* can have

the left horizontal and right oblique
or
the right horizontal and left oblique asymptote.

4) The function f does not have to have an asymptote.

The procedure: Taking into account the previous notes, all meaningful limits should be
determined, and the equations of the corresponding asymptotes should be written. When
drawing a graph of the function f, asymptotes are usually drawn with dashed lines.

4. Intervals of monotonicity and points of local extrema

plailaiilel (el =l ): The interval J is an open interval (in the set R) if J is one of the
intervals in a form of (-o0,a), (a,b), (a,%) for any real numbers a and b (of course, for the

interval <a,b> where a<b).

Definition (monotonic function on open interval, intervals of monotonicity):
Suppose that the function f is defined on an open interval J.

a) The function f* is increasing on J for each choice of different points x,, x, € J if

f(x)< f(x,) where x, <x,.
In that case it is said that f* is monotone on the interval J, and the interval J is called the
interval of monotonicity of the function f.

b) The function f" is decreasing onJ for each choice of different points x,,x, € J if

f(x)= f(x,) where x, <x,.
In that case it is said that f is monotone on the interval J, and the interval J is called the
interval of monotonicity of the function f.

Theorem (sufficient condition for monotonicity):
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Suppose that the function f is the derivative function on an open interval J.

If f'(x) >0 forall xeJ, then f isincreasing onJ (i.e.itis monotonous onJ).

If f'(x)<0 forall xeJ, then f is decreasing on J (i.e. it is monotonous on J).

Definition (point of local extremum);
Let the function f is defined on an open interval J and if ce J.

a) Ife >0 then

f(x)< f(c) forall xe<c—g,c>U<c,c+5>,
then the function f has alocal extremum (namely a local maximum) at the point ¢, and
M ((c, f(c)) is the point of the local maximum of the function f.

b) If €>0 then

f(x)=f(c) forall xe<c—g,c>U<c,c+g>,
then the function f has a /local extremum (namely a local minimum) at the point ¢, and
m(c, f (c)) is the point of the local minimum of the function f.

Definition (stationary point and critical point);
If the function f is defined on an open interval J andif ce J.

The point (c,f(c)) is a stationary point of the function f if f'(c)=0.

The point (¢, f(c)) is a critical point of the function f if f(¢)=0 or f'(c) does not exist (in
aset R).

Theorem (sufficient condition for the existence of a point of local extremum):
If the function f is defined onan openinterval J andif f isderivable onJ except eventually

at the point c e J.
If £>0 then

f'(x)>0 forall xe <c—g,c> and f'(x)<0 forall xe <c,c+g>,
then the function £ has a local maximum at the point ¢, i.e. M(c,f(c)) is the point of the
local maximum of the function f.
If £€>0 then
f'(x)<0 forall xe <c—e,c> and f"(x)>0 for all xe<c,c+5>,
then the function f has alocal minimum at the point ¢, i.e. m(c,f(c)) is the point of the

local minimum of the function f.

Definition (function that changes the sign at a point):
If the function f is defined on an open interval J except eventually at the point ¢ € J.

It is said that the function f is a function that changes the sign at a pointc if £ >0 then
f(x)<0 forall xe{c—e,c) and f(x)>0 forall xe{c,c+¢)

or
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f(x)>0 forall xe{c—e,c) and f(x)<O0 forall xe(c,c+e).

Firstly, the function f’ should be determined, and then the set
S; ={x € Ds:f'(x) =0 or f'(x) does not exist}.
Therefore, the natural domain Df, of the function f’should be defined, and all possible

solutions of the equation f’(x) =0.

The elements of the set S, together with the edges of the domain D, of the function f

determine the edges of the interval of monotonicity of the function f.

On each interval of monotonicity, on which the function f” is a continuous function (which has

no zeros in that interval), the same procedure is applied:
1) One point of that interval is chosen and the value of the function f"is calculated at that

point.
2) If this value is positive (negative), then the function fis increasing (decreasing) on that
interval.
If the function f” is the function that changes sign at the pointc e S,, then (c,f(c)) is the
point of the local extremum of the function f.

The type of the extremum is determined, a point of the local maximum or local minimum, using
the appropriate definition (definition of the point of local extremum).

5. Curvature intervals and inflection points

Definition (curved function on open interval, curvature interval):
Consider the function f* which is defined on an open interval J.

a) The function f" is strictly convexon J and if for all x,,x, € J then

f X X, <f(xl)+f(x2)
2 2
In that case it is said that f* is curved on the interval J, and the interval J is called the interval

of curvature of the function f.

when x, < x,.

b) The function f is strictly concaveon J if for all x,,x, € J then

f(xl + X, ] > f(x1)+f(x2)
2 2
In that case it is said that f" is curved on the interval J, and the interval J is called the interval

of curvature of the function f.

when x, <x,.

The function f is strictly convex (strictly concave) on an open interval J if and only if at each
point of that interval the tangent to the graph of the function f is belove (above) the graph
of the function f.
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Theorem (sufficient condition for a curve):
Suppose that the function f is double derivative on the open interval J.

If f”(x) >0 forall xeJ, then fis strictly convex onJ (i.e. it is curved on the interval J ).

If f”(x) <0 forall xeJ, then f isstrictly concave on J (i.e. itis curved on the interval J ).

Definition (point of inflection):

Suppose that the function f is defined on an open interval J andif ceJ.
If € >0 then f is strictly convex on the interval <c—£, c> and strictly concave on the interval

<c,c + £>, or vice versa,

%* ¥ %
ks -

* g K
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if f hasan inflection at the point ¢, and I(c,f(c)) is the inflection point of the function f.

Theorem (sufficient condition for the existence of an inflection point):
If the function f is defined on an open interval J and if f is double derivative on J except

eventually at the point ¢ € J. If the function f” is a function that changes the sign at the point
¢, then the function f* has an inflection at the point ¢, i.e. I(c,f(c)) is the inflection point
of the function f.

Firstly, the function f”, is defined, and then the set
S, = {x € D: f"(x) =0 or f"(x) does not exist}.
Therefore, the natural domain Df,, of the function f” should be defined, and all possible

solutions of the equation f"(x)=0.

The elements of the set S, together with the edges of the domain D, of the function f

determine the edges of the curvature of the function f.

On each curvature interval, on which the function f” is a continuous function (which has no

zero points on that interval), the same procedure is applied
1) one point of that interval is chosen and the value of the function f” is calculated at that

point.
2) If this value is positive (negative) then the function f is strictly convex (strictly concave) on
that interval.

If the function f” is the function that changes sign at the point ¢ € S,, then I(c,f(c)) is the

inflection point of the function f.

6. Graph function

All obtained information about the function f* through steps 1-5 should be merged into a
coherent image. When drawing a graph, it is possible to detect all inconsistencies, i.e. errors in
the previous calculation and correct them.

Examine the flux of the function y = f(x) and draw its graph, if:

16
f(x)— x? (x—4)'

Solution:
The function is elementary and therefore continuous (on each point where it is defined).
The same is true of its derivatives.
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1. Area of definition (natural domain), parity and periodicity
Di={xER: x2(x —4) # 0} = R\{0,4} = (—00,0) U (0,4) U (4, o)

The function is neither even nor odd because the domain is not a symmetric set with respect
to zero.
The function is not periodic because there are no trigonometric functions in its formula.

2. Intersections or touch points with coordinate axes

f(x)#0 forall xe D, so the function has no zeros.

f(O) does not exist because 0 ¢ D;. Therefore, the graph of the function f* neither intersects

nor touches the axis y.

3. Asymptotes

Possible vertical asymptotes are linesx =0 and x =4. Namely, 0 and 4 are points on the edge
of the domain D, where the function is not defined.

. 16 . . ,
lim ——————=-00 = x=0 is the right vertical asymptote.
=0 x? (x—4)

) 16 . ,
lim ——————=-0= x=0 is the left vertical asymptote.
=00 x* (x—4)

. 16 . . ,
lim —————=0= x=4 is the right vertical asymptote.
w4 x* (x—4)

. 16 . ,
lim —————=-0= x=4 is the left vertical asymptote.
40 x (x—4)

The function could have horizontal asymptotes because the limits lim /' (x) and lim f(x) are

X—>0 X—>—00

reasonable (in the domain D, is possible that x — o and x — —o© ).

li 16 =0€RrR
xl—I>Iolox2(x—4) B

= y =0 is the right horizontal asymptote.
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lim

X——00 xz(x - 4)

= y =0 is the left horizontal asymptote.

The function has right and left horizontal asymptotes so there are no oblique asymptotes.

4. Monotonicity intervals and points of local extrema

_—16[2x(x—4)+x* ] 16x(8-3x) 16(8-3x)

rx :
f() )c4(x—4)2 x4(x—4)2 x3(x—4)2
Dy =Dy;
S'(x)=0
16(8=3%) ) g 3y—pesx-?
x(x—4 3
f@)_ 16 _le 27
3) (8V(s ) 64-4 16

@2 54 3

Therefore, the only critical point of the given function is the stationary point (

=

The edges of the domain Df of the function ¢ are

—x0, 05 4a ©

so the intervals of monotonicity are:

f’(—l) <0= f is decreasing on <—00, 0>;

8
f’(1)>0:>f is increasing on <O,§>;

,4>;

f’(5)< 0= f is decreasing on <4,oo>.

f’(3) <0= f is decreasing on <

w | oo

Tore

(0.0

=0€eRrR
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The point of the local extremum of the function # can only be the critical point of the
function £.
Therefore

f'(x)>0 forall xe<0,§> (as f'(1)>0)
and

f’(x)<0 for all xe<§,4> (as f’(3)<0),

8 27). . . .
then M 3 16 is the point of the local maximum of the function £.

5. Curvature intervals and inflection points

f"(x)= ﬁ{—?ﬂf (X—4)2 —[3)62 (x—4)2 +2x° (x—4)](8—3x)} =
=%—i;;){—3x(x—4)—[3(x—4)+2x](8—3x)} -
=ﬁ[—h(x—@—(5x—12)(8—3x)] =

:ﬁ(—w +12x—76x+15x" +96)=ﬁ(12x2 —64x+96) =
=4(L:4)3(3x2 —~16x+24);

Dy =Dy

f"(x)#0 for all x€ D,. because the equation 3x* —16x+24 =0 has no real solutions.

Therefore, S2 =(J the set function has no inflection points.

The edges of the domain Df of the function £ are:

—0, 05 4a 0

(—0,0),(0,4),(4,00).

f"(—l) <0= f is strictly concave on <—00,0>;
f”(l) <0= f is strictly concave on <0, 4>;

so the curvature intervals are:
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f”(5) >0= f is strictly convex on <4,oo>.

6. Graph function

f(x) =xIn’ x.

Solution:
The function is elementary and therefore continuous (on each point where it is defined).
The same is true of its derivatives.

1. Area of definition (natural domain), parity and periodicity
Df={x€R: In(x) ER}=R" =(0,)
The function is neither even nor odd because the domain is not a symmetric set with respect

to zero.
The function is not periodic because there are no trigonometric functions in its formula.
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2. Intersections or touch points with coordinate axes

f(x)=0exh’x=0ch’x=0chx=0cx=1.

Therefore, is the zero of the function.

f(O) does not exist because 0§EDf. Therefore, the graph of the given function neither

intersects nor touches the axis .

3. Asymptotes

A possible right vertical asymptote is a linex =0. Namely, zero is a point at the edge of the
domain Df where the function is not defined, and only the right limit at that point is sensible

because the set function is not defined to the left of zero.

1
In*x [oo | 2lnx-7 2Inx
lim xIn® x =[0-0] = lim =|—|=lim ———% = lim =
x>0 x—0" 1 o0 x—0*0 _L x—0*0 _l
X £ X

2

{ﬁ}: lim 2~ 2 lim x =0
—00 x>0 L x—0"
xl
LP

Note: Equality = is obtained by applying the L'Hospital's Rule.

0 . . .
So, when x — 0*° then y —> 0™ therefore x =0 is not the right vertical asymptote of the
given function.

The function could only have a right horizontal asymptote because only the limit 1imf(x) is

X—>0

sensible (in the domain Df is possible that x = o0, but not that X = —0).
lim xin?x =0 & R
X—00

It can be concluded that the given function has no horizontal asymptotes.

The function could have only the right oblique asymptote because only the limits

G

X—>0 X

=k and lim[ f(x)-kx]=1,

are reasonable (in the domain Df is possible that x = o, but not that X = —0).
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X xIln®x
ky = lim & = lim
xX—oo X X—00 X

so the function has no oblique asymptotes.

=0 &R
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4. Monotonicity intervals and points of local extremes

f’(x)=1n2x+%-2lnx-%=lnx(lnx+2);

J/'(x)=0

lnx(lnx+2)=0<:>lnx=0 ili hx=—2<ox=1ili x=¢7;
FO)=101=0, ()= (e =" (2 =40

Therefore, the critical points of the set function are stationary points (1,0) and (e‘2,4e‘2).

The edges of the domain Df of the function £ are:
0,00

so the intervals of monotonicity are:

<0, e’ > , <e'2 s 1> s <1, oo).

f'(¢?)>0= f isincreasing on <0,e*2>;
f’(e"l) <0= f is decreasing on <e‘2,1>;
f’(e) >0= f isincreasing on <1,oo>.

The point of the local extremum of the function # can only be the critical point of the function

f.

Therefore
f’(x) >0 forall xe <0,€_2> (as f’(e_3) >0)
and

f'(x) <0 forall xe <e"2,1> (as f’(e“) <0),
then M/ (e’2,4e’2) is the point of the local maximum of the function 7.

Therefore

f'(x) <0 forall xe(e’2,1> (as f'(e")<0),

and
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f'(x)>0 forall xe(l,») (as f'(e)>0),

then m(1,0) is the point of the local minimum of the function f.

5. Curvature intervals and inflection points

1 1 2
"(x)=2Inx-—+2-—==(1 1);
f (x) nx x+ . x(nx+ ),

Df” :Df;

f"(x)=0

g(lnx+1):0<:>lnx+1:0<:>lnx=—1<::>x=e’1;
X

The edges of the domain D, of the function f are:

0,00

<0, e’ > , <e’1 , 00>.

f”(e’z) <0 = f is strictly concave on <0,e’1>;

so the curvature intervals are:

f"(1)>0= f is strictly convex on <e“,oo>.
The inflection point of the function f* can only be the point (e",e’l).

Therefore
f"(x)<0 forall xe <0,e‘1> (as f"(e‘z) <0),
and
S"(x)>0 forall xe (e o) (as f"(1)>0),

then I(e’l,e*) is the point of inflection of the function f.
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6. Graph function

y = zln’z

o Me * 4e7")

Example

f(x) =xe .

Solution:

The function is elementary and therefore continuous (on each point where it is defined).

The same is true of its derivatives.
1. Area of definition (natural domain), parity and periodicity

D, =R =(~0,%).
Forall xe D, is:
f(=x) =—xe ™ =—xe ¥ =—f (x)
therefore the function f'is an odd function. So, the flux of the function only at the set is

examined

The function is not periodic because there are no trigonometric functions in its formula.
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2. Intersections or touch points with coordinate axes

f(x)zO(:)xe‘"2 =0<x=0.
is the zero and intersection with the axis y.

3. Asymptotes

Dy = R so the function has no vertical asymptotes.
The function could only have a right horizontal asymptote because only the limit limf(x) is

X—>0

sensible (in the domain D, is possible that x — o).

2
X0 X—>0 ex 0

) xe”
= y =0 is the right horizontal asymptote.

, LP
lim xe™ =[o0-0] = lim—5 :[f}=lim L o

The function does not have the right obliqgue asymptote because it has the right horizontal
asymptote.

4. Monotonicity intervals and points of local extremes
f(x)= e —2xle ™ = (1 - 2x2)e_xz;

Df, :Df;
f'(x)=0
) x>0
(1-24")e™ _ 0 1-2x =00 x =—— ~0.707107;
2
ERIRI
V2 ) 2
1

S =—

{5
The edges of the interval I:O,oo> are:

0,00

so the monotonicity intervals (on the interval I:O,oo> ):

<O \/1 >< 1 00>
) 2 ) \/59 *
(1 o . LAY
f(5]>0:>f is increasing on <0, ,—2>,
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f'(1)<0= f is decreasing on <L oo>_

\/5 s
The point of the local extremum of the function f can only be the critical point of the function
f.
Therefore
f'(x)>0forall xe <O,L2> (as f’(%) >0)
and
1
"(x)<0 forall xe({—,o) (as f'(1)<0),
() (o) s £10)
1 1
then M| —,—e¢ "* | is the point of the local maximum of the function f.
E7) !

5. Curvature intervals and inflection points

f"(x)= —4xe™ —Zx(l —2x° )e_’“2 = 2x(2x2 —3)e_x2;

2x(2x2—3)e_"2 <:>x(2x2—3)=0x:>20x20 ili x=\/§z1.22474;
2
3 3
0)=0, 2=, ]2
/(0) f{ ZJ \Ee
3
SZZ{O, E}

The edges of the interval I:O,oo> are:
0,00

so the curvature intervals (on the interval I:O,oo> ):

e

3

f,r(l) <0= f is strictly concave on <0,\/;>;
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14 . . 3
/"(2)>0= f is strictly convex on <\/;,oo>.
Therefore

f"(x)<0 forall xe<0,\/§> (as f"(1)<0),
and

£"(x)>0 forall xe<\/§,oo> (as f"(2)>0),

then [[\E,\/ge”J is the point of the inflection of the function f.

6a. Graph of the function on the interval I:O,oo>

6b. Graph function
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Solution:

The function is elementary and therefore continuous (on each point where it is defined).
The same is true of its derivatives.

1. Area of definition (natural domain), parity and periodicity Dy = R\{2} = (-0, 2) U (2, )

The function is neither even nor odd because the domain is not a symmetric set with respect
to zero.
The function is not periodic because there are no trigonometric functions in its formula.

2. Intersections or touch points with coordinate axes

1
f(x):0<:>xe;=0<:>x:0.

is the zero and the intersection with the axis y.

3. Asymptotes

A possible right vertical asymptote is the line x =2. Namely, 2 is the point on the edge of the
domain D, where the function is not defined. Obviously both limits

lim f(x) are lim f(x)

x—>2"0 x—27
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are sensible.
1

lim xe*2 =0 so x =2 is the right vertical asymptote.

x—>2*0

1
lim xe*? =0.

x—27°

The function could have horizontal asymptotes because the limitslim £ (x) and lim f(x)

X—>0 X—>—00

are sensible (in the domain D, is possible that x — o0 and x — —0).

1

limxe*? =0 g R
X—>00

X = the function has no horizontal asymptotes.

lim xe*2 =—w0¢ R

X—>-%

The function could have oblique asymptotes because all the associated limits are sensible (in
the domain D, is possible that x — 0 and x — —o0 ).

1

hmZLQ:hmééi:lzheme;

X—>00 X X—>®0 %

1 L

- - 2 e 2 1

x-2 LP — .
=1lim< l{qﬂm(x) = lim e =

X—0 1 O X—0 _L X0 (x 2)
2
X X
2 _

=1lim lime*?=1=/ €R

=1 =1
so y=x+1 is the right oblique asymptote.
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1
tim L) i £97 e R\{0};

X—>—00 x X—>—00 %

1 R
— B 2 2 e 2 1
x=2 LP — _
= lim 1:[9}=hm (=2 = e =
X—>—0 l 0 X—>—0 _i X—>—0 (x _ 2)
2
X X
x° —
=lim —— lime~? =1=/,eR

o v2 _
x——0 x 4dx+4 x— ool
=1 =

so y =x+1 is the left oblique asymptote.

4. Monotonicity intervals and points of local extremes

1 1 2 1
f’(x):ex‘z— X e“e”{l—( X ]x5x+4exz;

()6—2)2 x—2)2 (x—2)2
Dy =Dy;
S'(x)=0
2 1
96(;926;46” =0’ -5x+4=0ex=1ili x=4.
e

f()=e', f(4)=4".
Therefore, the critical points of the given function are stationary points (l,e‘l) and (4,4e“2).

s, ={1,4)

The edges of the domain D, of the function f* are:
—00, 2,00

so the intervals of monotonicity are:

(=o0,1),(1.2),(2.4),(4,00).
£'(0)>0= f isincreasing on (—o0,1);

f’(%} <0= f is decreasing on (1, 2>;
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f'(3)<0= f is decreasing on (2,4);
/'(5)>0= f isincreasing on <4,oo>.

The points of the local extremes of the function f can be only critical points of that function.

Therefore
f'(x)>0 forallxe(-w,1) (as f'(0)>0)

and
f'(x)<0 forallxe(1,2) (asf'(%)<0),

then M(l,e’] ) is the point of the local maximum of the function f.

Therefore

f'(x)<0 forallxe(2,4) (as f'(3) < 0)
and

f'(x)>0 forallxe(4,:) (as f'(5)>0),

then m(4, 4e”2) is the point of the local minimum of the function f.
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5. Curvature intervals and inflection points

1 1

1
(2)c—5)eE (;5;;4 o2 (x—2)2—2(x—2)(x2—5)c+4)eE
" x —
() =
2
(2x-5)(x-2)- X" o(scad)
= X — ex—2:
(x-2)3
2
zxx/f 9x+10-> 5x+472/f+10x § | xep-XTOXHE
x—2= x3_2 ex—2=
(x 2) (x—2)
:(x+2)(x—2)—x2+5x—4ex / 47/x/f+5x 4 xl—z: 5x—8 eé,
(96—2)4 (x 2) (x—2)4
Df”:Df;
f”()C):O
5x-8

The edges of the domain D, of the function /" are:
—00,2,00

so the curvature intervals are:

f"(1)<0= f is strictly concave 0n<—00,§>;

Vi (%j >0= f is strictly convex on <§, 2>;

f"(3)>0= f is strictly convex on(2,).
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Therefore
f"(x)<0 forallxe <—oo,§> (as f"(1)<0),
and

f"(x)>0 for aIIxe<§,2> (asf”(%j>0),

then I(%,%e”j is the point of inflection of the function f.

6. Graph function

B

~

A}
~
>~‘
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f(x): |x|(2—1nx2).

Solution:

The function is elementary and therefore continuous (on each point where it is defined).
The same is true of its derivatives.

1. Area of definition (natural domain), parity and periodicity

D, = R\{0} = (~o0,0)U(0,0).

For all xeDf:

£ (=)=l 2=n(=x) |= [+l (2= 1) = £ (x)

So the function f is a pair function. Therefore, it is sufficient to examine the flux of the
function only for the set

D, N[0.%0) = RN[0,%0) = (0,00).

for x>0 is:

f(x¥)=vx(2-2Inx)=2Vx(1-Inx).
The function is not periodic because there are no trigonometric functions in its formula.

2. Intersections or touch points with coordinate axes

f(¥)=0e2Jx(1-Inx)=0=1-hx=0=hx=1cx=c

Therefore, is the only zero of the set function on the interval <0,oo>.

f(O) does not exist 0¢ D,. Therefore, the graph of the function neither intersects nor

touches the axis y.

3. Asymptotes

i i . 1-Inx oo |LP
i )= i 2 1) =0 iy P[]

2Jx

1
LP -/
= lim —ff = lim 4/x =0

x—0*0 x—0"0

4fx

so the function has no vertical asymptotes on the right side of the graph;
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lim £ (x) = lim2v/x (1-Inx) = —0 ¢ R

so the function has no right horizontal asymptote;
2

LACI N —Z(I_IHX):[ﬂF' _1 —hmT—OZkl;
w X—>0 X—>00

2Jx
k, & R\{0} so the function has no right oblique asymptote.

lim

X—>0 x X—>00 \/;

4. Monotonicity intervals and points of local extremes

1 Inx— 2 l+lnx

£(x)= j_(l 1nx)+2\/_ g "

D, =D,N]0,)

f'(x)=0
_1+lnx

Jx
f(e_'): 4\/6Tl =4e™"2,
S, z{e’l}

The edges of the interval <0,oo> are:

=0 1l+lnx=0hx=-1x=¢".

0,00

so the monotonicity intervals (on the interval<0 oo>):
<0 e’1> < ! oo>.

f'(e‘z) >0=> f isincreasing on <0,e‘1>;
f'(1)<0= f is decreasing on <e_1,oo>,

The point of the local extremum of the function f* can only be the critical point of the
function f.

Therefore
f'(x)>0 forallxe <O,e’1> (asf’(e‘z) >
and

f'(x)<0 for a||xe<e_1,oo> (as f'(1)<0)
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then M(e",4e’”2) is the point of the local maximum of the function f.

5. Curvature intervals and inflection points

1 1 1 2
f”(x)z—x[_m(mnx) TR et
X X 2x\/;’

D, =D, [0’°°>5

f"(x)=0
Inx—1

2x\/;

=0 hx-1=0=x=c.

The edges of the interval <0,oo> are:
0,00

so the curvature intervals (on the interval <O,oo> ):

<O, e> , <e, oo>.

f"(1)<0= f is strictly concave on <O, e>;

f"(ez) >0= f is strictly convex on <e,oo>.

Therefore
f"(x)<0 forallxe(0,e) (as f"(1)<0),
and
f"(x)>0 forallxe <e,oo> (asf”(ez) >0),

then /(e,0) is the point of the inflection of the function f.
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6a. Graph of the function on the interval <0,oo>

]\,[(6:71,4&7”2)

6b. Graph function

I(e,0)

y = 2vxz(1 — Inx)
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Example 4

Example of a function where the point of the local extremum is a critical point that is not
stationary:

xifx=>0

—x if x <0

0 = Ixl = {

I _1|fx>0
f(x)_{—1 if x <0

/i (0)= lim ~lim L =1 )
N £(0 t)_of(O) o = /'(0)= llrlgf(Otht)Of(O) does not exist.
’ +t)— - PN _
ﬁ(O):thl;)% -0 :t1—1>0*07__1
f(0)=0

The edges of the domain of the function f are:
—00, 00

(=00,0),(0,0).

so the intervals of monotonicity are:

Therefore
f'(x)=-1<0 forallx<0

and
f'(x)=1>0 forallx>0,

then m(0,0) is the point of the local minimum of the function f.

Graph function y = |x|:

Co-funded by the
Erasmus+ Programme
of the European Union

79



ARE Innovative Approach in Mathematical Education for Maritime Students
h+h/Cf 2019-1-HR01-KA203-061000

y = |x|
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6.8 Exercises

Task 1. Prove that:

! !

a+bx bc —ad 2x+3 —2x% —6x+25
(1) = 2 ; (2 5 = 5 ;
c+dx (¢ +dx) x°=5x+5 (x2—5x+5)
@) =2 _l) R (@) [x=1)-e = e
Tlox-1 x) x(2x-1)
) ') ef(x-2) [ 1 J _ 2+l
x’ x £+l (12+t+1)2
Task 2. Find the derivatives:
(1) y=(+3x+522); 2) y=(-sinx)’;
(3) y=3lsin®x + L. 4) y=32e"+2"+1+1In’ x;
cos® x’ V= ’
(5. y:sin3x+cos§+tg\/_,‘ (6.) y:sin(x2—5x+1)+tgﬁ;
X
(7.)  y = arctg(Inx)+ In(arctg x); ®8) y=In’ arctg(gj;
> < I
9) y=+x*+ —lnu; (10.) y:lnw—i-Zarctg«/sinx;
X I —A/sinx
2 _ xarcsinx ——
(11.) yzélnx2+l+llnx—l+larctgx,‘ (12.) y=—2+ln I-x*;
4 x -1 4 x+1 V1i-x

sint 1+ sint
n

(13.) y=—s—+I ; (14.) y=e'arctge’ —In1+e*" .

cos~ t cost
=2 2 2x
sin“x cos” x e
15. = + 16. =arctge* —1
(13) l+ctgx  1+1gx (16.) y=arcige” ~In e +1

Solution:

(1.) y’=4(1+3x+5x2)3(3+10x); (2) ¥y =-3(3-sinx)’ cosx;
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(3) )= 2cos x +2sinx_ () )= 2¢" +2"In2 +51n4x‘
‘ 3-13ISZ'I’I)C COS3X’ ‘ 3.3[(2ex+2x+1)2 X '
1 1 , ) a 1
(5.) —3c0s3x——sm +— §(6.) ¥ =(2x=5)cos(x* —5x+1)- = ;
2\/; cos \/_ ( ) x* cos? &
X
, 1 1 1 1 X 1 3
7. = M + * ; 8. ! = 2 . . ;
(7 4 l+In*x x arctgx 1+x° (&) Y lnarctg[ J X 94 x?
arctg —
3
2
x“+1 2
(9.) ‘= ; (10) y'=——r—;
X COS XA/ sin x
2 .
(11) »'= X i 31x’_ (12) /= arcsm;}c :
t T (1-x):
’ 2 ! X X
(13.) y'= — (14.) y =e arctge;
cos™ t
’ ' e’ —1
(15.) y'=—cos2x; \ (16.) y'=——.
e +1
Task 3. Prove that the function y = xe 2 satisfies the equation x-y' = (1 —xz)y .
Task 4. Prove that the function y = iy satisfies the equation 2x° -y’ —x’y* —=1=0.
x—xlnx
Task 5. Find the derivatives:
(1) f(x)=10""; (2.) glx)=y(1+x);
(3)y=x""; (x—2)

Solution:

(1.)f’(x):10x’gx(tgx+ ol j-lnlO;

cos X
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(2.) g'(x)=2-5/(1+x) L( L __ l”(x,fl)} ;Vx e R\{0,~1};

x+l) X

(3)y'= x““(cosx-lnx+ smxj;
x

8 2
)y =2 s _7“1); vx e R\{L3};

Y1) (x-3)"

2
(5.)y,:x(8x +7x—4)_ zx_l;VxeR\{l,—l}.
2(x+1)2x-1) V x+1 2

Task 6. Find the partial derivatives:

(1.) F(x,y): ln(x+\/x2 +y° ),’

2 2
X"+ —X
(2.) Flx,y)=in ¥ 2L~
xP+y’ +x

(3.) F(x,y) = aqresin

Solution:
(R oF _ y .
X \x*+y’ C xP 4yt xyxt 4y’ ’
2) oF -2 OF _ 2x _
Ox x*+y° y y x>+’ ’
or \/Exy oF —J2x?

R Y A S Ve

Task 7. The function is given as F(x,y)= Z(y2 +1). Define Z—F and (Z—F at the point T'(2,1)
X x y

Solution: a—F(z,l) -_L a—F(z,l) =1
ox 4 Oy

Task 8. At the point (1,1) find the partial derivatives of F(x,y)= | .

2
OF _ X—xy+y :a—F(l,l) V2

Solution: —
Ox (l—x—y)zw/x2+y2 Ox
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G_F: X —xy+y GF(M) \/5
y (1—x—y)21/x2+y y 2

Task 9. Find the derivative y = f(x) of the implicitly given function:

X 1
(1)e" =x+y; (2.) 1HJ/+;=C; (3.)arctg%:Eln(x2+y2);

[ 2 2 _ Y. z
(4)yx"+y" =C arctgx, (5.) e* =arctg[x" +y" .

Solution:
! ]' ’ ! x+
(1.) y'= ; () y'=—2—; 3)y =",
x+y-1 xX—=y xX=y
v
, Cy+xqx® +y° , x3+y-e)‘(1+x2+y2 x*+y°
Cx—yyx"+y e;(1+x2+y2)\/m—x2y
Task 10. Calculate the derivation y" of the given function at the stated points:
3 vy x+l
(1) (x+y) =27(x-y) at T(2,1); (2.) ye' =™ at T(0,1);
(3.) y* =x+mnZ at T(L1).
X
Solution:
27 -3(x+y)’ e 1
(1.) ' ——5en=0; 2.) Yo ==l ==
y‘(m) 3(x+y) +27‘( 1) ‘(0,1) ¥ ‘(0,1) 2
(3.) y"(ll 722_)‘ (1,1)
Task 11. Find y'(x);a,b,c€R if:
j 3at
x(t - _asnl Ar)=—=2,
(1.) 1+bcost (2.) 1+ 7
y(t)z c-cost ‘ y(t): 3aft’
l+bcost 1+
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cos’ t
x(t = ,
(3.) N cos 2t
sin’ t

y(t) B \cos 2t ’

Solution:
. 3
(1.) y’(x):—Lm; (2.) y,(x):42—_t3);
a(b + cost) 1-2¢
(3.) y'(x)= g3t
Task 12. Find y" (x) if
{x(t)— arctgt, {x(z‘)z Int,
(1°) 1, (2°) 1
= —7. = —.
Ho= 1 W= -

(3°) {x(t)z arcsint, (4°) {;Z;Z In(t:/%/?)

Solution:
(1.) y"(x)=(1+t2X1+3t2); (2.) ¥(x)=
(3) y"(x):—\/l—t2 ; (4.) y"(x): 1+2* .

Task 13. Define the equation of the tangent of the function y = x> —4x+3 at the left
zero-point.

Solution:

Zero-points are x; =1 and x, = 3; left TO(I,O); t: y+2x—-2=0.

Task 14. On the function f(x) =x>+3x-4 place the tangent that is parallel to the line
2x-3y+1=0.

Solution:
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2 7 221
k, :§:(2x0 +3)= x, iR vt 36y —24x+193=0.
Task 15. Find the equation of the tangent and the normal for functions:

(1.) f(x)=In(cos x) at the point x, =27 .

(2.) f(x)=

at the point T(2, £(2)).
x“+4

Solution:
(L) % =273, =0; /(%)= 0;
t:y=0;, n:x-2n=0;
1
@)% =23y =Lk, = f(2) ===
t:x+2y—-4=0; n:2x-y-3=0.

Task 16. From the point T(4,1) find the tangent on the curve y =x_—1 and define the
X
contact points.

Solution:

1
D(2,Ej;t:4y—4:0.

Task 17. At which point of the parabola y:x2 +2x+1 the tangent makes identical
angles on both sides of the coordinate axis?

Solution:
11 31
7—; __)_ ; T2 __J_ .
2 4 2 4
Task 18. Find the equation of the tangent and the normal on the parametrically given
curve:

x(t): 1+t, x(t): 2t ’

t_3
31 '
Ae)= F-'_Z_t; at the point T, (2,2); Ar)=

~
~
\S]

5 for i, =2;
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3) {x(z‘) = sint,

y(t)= a';  atthe point for which , =0.

Solution:
" t: Tx-10y+6=0, ) t:4x+y—-6=0,
T on:i10x+7y-34=0; ' nix—4y+7=0;
t:y—xlna-1=0,
(3.)
n:y+Lx—1:0.
Ina
1 1gx
Task 19. Define the equation of the tangent on the curve y =(sin2 x+5j at the point

for which the abscissa is x, = 377[

Solution:
3 3
dy—dx+3m-4=0; T| 21|, y| 2 |=
4 4
Task 20. Find the angle at which the parabolas intersect:
2 2
X X
(1-)y=4—7 and y== (2)y=x"and y* =x.
Solution:
(1.)  @=126°52; (2.)  @1=36°50" and ¢, =90°.
Task 21. Find the equation of the tangent and the normal on the curves that are given by

an implicit equation:

(1.)3x” —=y—2x+1=0, at the point T(l,2);

(2.) 8x*=9y*=72=0, atthe point T(-9,-8);

(3.)x-e 2 —y-e 2 =0, atthe point with the abscissa x, =0.

Solution:
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(1) £ Bx=yp=11=0,  (2) t: x—y+1=0,
n: x+13y-27=0; n: x+y-1=0;

3) T(0,-2), k =e—1;

t:y=(e—1)x—2; n:(e—l)y+x+2(e—1)=0.
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Task 22. Find limits:

2

(1) ﬁm(l—X)tg% 2) lim{x—xz ln(1+lﬂ (3.) lim Z—24rciex
X X—>®©

x—1 X—>00] hud
e’ —1
. . L . 1—cosx
(4.) lgrglo[ln(x+1)—lnx] (5.) )lcl_r%x4+lnx (6.) }61_13’(1) ~
1
. Ssinmx . ex—1 . Sinx—x
(7.) Jl(l_r)r(l) p— (8.) }Cl_l‘)r(l) % (9.) Jl(l_r)r(l) .
Solution:
(1) = )3 3) 1 4)0  (5) e®
(6.)0 (7)-m &)1 )0

Task 23. Consider the function f(x) = x3 — %xz — 18x. The points c=3,-2 satisfy f'(c)=0 .

Use the second derivative test to determine whether f has a local maximum or local minimum
at those points.

Solution:

fhas alocal maximum at -2 and a local minimum at 3.

For tasks 2 - 6, determine:

a) intervals where f is increasing or decreasing

b) local minima and maxima of 7

c) intervals where f is concave up and concave down
d) the inflection points of £

e) Sketch the curve.

Task 24.

Solution:
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a) Dy =R\ {3,-3},

b) N(0,0),

c) VAx=43,HAy=1,

8 ' 5 62
6) /() = o f7(0) = = 22 700, 0)
15 10 5 3 10 15

-1

Task 25.
4x—-12

fx)=
(x-2)
Solution:

a) Dy = R\ {2},
b) $x(3,0), Sy(0,-3),

c)VAx=2HAy=0,

d) f100) = 22 F(x) = 2 Tra4,1), 1(5,5).

(x=2)3 "’ 2)4’ 9
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4\ T 3 10

-5

-10

Task 26.
f(x) _w
x> =2x
Solution:
a) Dy = R\ {0,2},
b) N1(3,0), N2(1,0),
(VA x=0, x=2 HAy=1,
d) f'(x) = 2x2—6x+6 "(x) = —4x5+26x*-72x3+96x%2—48x th . ith
fx) = FeEEryey () = Y , there are no minimum either

maximum.
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e

-10 -3 » 10

Task 27.

In (2x)
x2

fx) =
Solution:
a) Df = (01 OO) ’

b) N, 0),

2
c)VAx=0;HA y=0,

6x2In2x—2x—-5 Ve 2
, Tmax (7 ’ _)

e

6) £ (o) = EEED ) =

x6
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-2

—4

Task 28.

f&) =

(1+x2) ©

Solution:

a) Dy = R\ {—1},
b) N (0, 0),
c)VAx=-1;LHA y=0,

e¥(x%+1)
(1+x)3 "’

e¥(x3+3x-2)
(1+x)?

d) f'(x) = f"(x) = , there are no minimum either maximum.
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6.9 Connections and applications

Examples of applications in the maritime domain.

Maritime affairs does not include only sailing or underway actions and navigation but it brings
together terms from vessels, employees and companies over shipbuilding to trade, transport
and management. Calculus can help us solve many types of real-world problems in maritime
affairs.

We use the derivative to determine the maximum and minimum values of particular functions
(e.g. cost, strength, amount of material used in a building, profit, loss, etc.). Derivatives are met
in many problems in maritime domain especially relating velocity and position and generally,
rates of change related quantities.

6.9.1 Related Rates

Here we study several examples of related quantities that are changing with respect to time
and we look at how to calculate one rate of change given another rate of change.

Example 1:

Ship A is 50 miles west of ship B. The ship A is sailing east at 10 knots, and the ship B is sailing south at
15 knots. Find the rate of change of the distance between the ships after 5 hours.

Solution:

Step 1: Draw a picture placing the problem and introducing the variables.

A d = 50 miles B

coo0oo0co0e
S

> !E%ﬂ 5

distance traveled by the ship A X

=3k

e

e 000000
s

Co-funded by the
Erasmus+ Programme 95
of the European Union




ARE Innovative Approach in Mathematical Education for Maritime Students
h+h/Cl 2019-1-HR01-KA203-061000

Let  denote the distance sailed by the ship B, x denote the distance between the current position of
the ship A and starting position of the ship B and zdenote the currentdistance between the ships. Notice
that x, yand zare functions of time and @ does not depend on time - it is the initial distance between
ships (fixed number).

Step 2: Since xdenotes the horizontal distance between the current position of the ship A4 (at the time

f) and the start point of the ship B, then % represents the speed of the ship A.

It is told the speed of the ship Ais 10 knots (mph) and it implies that the distance x decreases 10 miles

every hour. Therefore, % = —10 mph.

. . . . : : .. d
Similarly, y denotes the distance between the B ship position at the time t and its start point. d—Jt/

represents the speed of the ship B. It is told the speed of the ship Bis 15 knots (mph) and it implies that

d

the distance y increases 15 miles every hour. Therefore, d—Jt’ = 15 mph.

Since, it is asked to find the rate of change in the distance z between the ships after 3 hours, we need

to find 4z whent=3h.
dt

Step 3: Find the value of x and y after 3 hours of sailing. We will use input values directly in the

formulas. Reminder:
The formula for distance d,
x=d—vAt=50—103=30mlleS speed v and time t:

— 1 .t — .2 — ; v=2ord=v-tor
y=vg-t=15-3 =45 miles t

Note, z is the hypotenuse of the right triangle with side xand side y from above figure. Thus,

z = Jx2 + y2 = /302 + 452 = 54.08 miles. Reminder:

c? = a? + b?

Step 4: Find the rate of change in the distance z with the respect to time. It will be done by
determination z' given that x' =-35and y' =50.

We can again use the Pythagorean Theorem here. First, write it down and differentiate the

equation using Implicit Differentiation.
X, y, and z are all

Z2=x*+y*= changing with time and
222" = 2xx' + 2yy' 80 the. equation id
differentiated using

g = 2xA2yy _ 230:(=30)+2:4545 _ o g iae Implicit Differentiation.

2z 2-54.08

Therefore, after 3 hours the distance between ships is changing with the rate of 20.8 miles per
hour.
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Example 2:
A ship sails according the law:

6 - e0.055t

1
s = (1272. 7-In — 50t> [m]

The start velocity of the ship according this voyage should be determined.
Solution:
Let s is the distance travelled by a ship and it is changing with time. So it can be denoted s(t).

Since velocity vis the instantaneous rate of change of travelled distance with respect to time t
we need to find the value of the derivative s'(t).

ds 7 6
_ — - .Z.,0055¢t, _
U—E—1272.7 17600055 7 e t.0.055—-50
420
U=1+6.e0.055t_50

To get the start velocity of the ship it is needed to calculate the s'(t) at t = 0.

420
Vo =m—50 = 10m/s

Example 3:

A boat is pulled in to a dock by a rope with one end attached to the front of the boat and the
other end passing through a ring attached to the dock at a point 1 m higher than the front of
the boat. The rope is being pulled through the ring at the rate of 1 m/sec. How fast is the boat
approaching the dock when 8 m of rope are out?

Solution:

Step 1: Draw a picture.

=2
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The boat is approaching to the dock. This distance is unknown and let x denote that distance.
It is known that the pulley is 1 meter higher than the front of the boat and let A denote this
height. It is the constant value.

ydenotes the length of the rope that the boat is pulled. From the figure above it can be noted
that the angle <CDE is the right angle.

Since the rope is being pulled at the rate of 1 m/sec, we know that % = —1m/sec. It is the

negative value because the length of the rope is shorter and shorter by pulling the boat (it is
shorter for 1 meter per second).

If the boat is apart 8 m from the dock, it is needed to find how fast the boat is approaching to
the dock, i.e. the rate of change in the distance d between the boat and the dock per second.

We need to find % =?m/s when x is 8m.
Note that both xand y

are functions of time,
and the height Ais the
constant.

Step 2: From the right triangle CDE we can use the Pythagorean Theorem to write an equation
relating xand y(A=1m): Reminder

If 4 is a constant

dh
then — =0.
dt

y2 = x2 + 12

Step 3: Differentiating this equation with respect to time and using the fact that the derivative
of a constant is zero, we arrive at the equation:

dy dx
ZyE =2x—+0

We can use the Pythagorean theorem

dt to determine the lenght y when x=8 m,
2ydy 2xdx and the height is 1 m . Solving the
2xdt  2xdt equation:

2-8.06m y2 = x2 + b2
_— (-1 —
y =+/x? + h?
dx  8.06 — 1011
at - g ms=-10lmis T — V65~ 8.06m

Example 4:
The atmospheric pressure P varies with altitude above sea level xin accordance with the law:
P(x) = P, - g~012104x

where Py is the atmospheric pressure at sea level. If the atmospheric pressure is 1013 millibars
at sea level, how fast the atmospheric pressure is changing with respect to altitude at an
altitude of 20 km.
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Solution:

The rate of pressure change is derivation of the function P(x) with respect to the altitude x.
Thus,

P'(x) = 1013 - (e7012104%)" = 1013 - (=0.12104) - (e~*12104%) = —122.61 - (e ~012104)

P'(20) = —122.61 - (e~ 21210420y = 10.8939 milibars per km

Example 5:

The output signal of an ideal operational amplifier in a derivative connection should be
analytically determine. Graphically compare the input and output signal if the following values
are known.

U, (t) = 10sin(27 - 3000t)

R1 = 5kQ
C1 =10nF
R1
ik
Sk
21 u1
|1
1.l e
1nF
&
O
Solution:
The equation for output signal is:
dUy
Ugy=—-R1-C1- d;
d[sin(2m - 30000)]

U, =-5-10°-10-10""-10"

dt
Uiyi = —9.42 - cos (2 - 3000¢)
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Example 6:

The law of rotational motion of the steam turbine during putting in operation should be

determined. It is known that the increasing of angular velocity is proportional to third power of

time and in the moment t= 3 s the velocity of rotation of the turbine's rotorisn = 810 min™?.

Solution:

From described problem, the law of rotation motion is proportioned third potential of time and
can be expressed as:

@ =k-t3.

It can be said that the angular velocity is equal to change in angle over a change in time. So if
we want to express it in calculus sense it would be the derivative the angle with respect to time:

do
=—=3"- k-t
© =

Known values can help us to get the proportionality constant k from previous equation.

w mT'n

k: =
3:t2 3-30-t2

- 810

~3.30.9

The law of rotation motion of a steam turbine is:
@ =m-t3

The angular velocity and angular acceleration are as follows:

w=3"m-t?

E=6"m"t.
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Example 7:

The bending of the steel truss is given by the equation f(x) = 10™*(x°> — 25x2), where x
denotes the distance from the girder. Calculate the second derivative (change in the direction

coefficient of the tangent) for x = 3.

Solution:

. dy d(107*x5) d(107*25x?)
Y T dx dx B dx

" =10"*(20x3 = 50
y

= 10"*(5x* — 50%)

14 1
Yy _y = 0.049 H
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6.9.2 Optimization problem (minimum, maximum)

Many important applied problems in maritime affairs involve finding the maximum or minimum value
of some function like as the minimum time to rich the distance by a ship, the maximum profit, the
minimum cost for doing a task, the maximum power and so on. Many of these problems can be solved
by finding the appropriate function and then using techniques of calculus to find the maximum or the
minimum value required.

Guide to solve the problem: max (min) of y(x)
. . . dy
a. Determine stationary point: ol 0

Find the value of x .

b. Find the value of y , when x = ?

i ot . d?
c¢. Determine the nature of stationary point, d—sz’ =

Example 8:

Two fishing boats sail in the same plane, in the direction, at the same speed, in knots. The sailing
directions close an angle of 120°. At one point one of these boats is at the intersection of their
directions, while the other boat is at p knots away from the intersection. Find the time when
the distance between the boats will be the shortest and what it will be.

Solution:

s=vt=> s; =t S, =p—vt

1
d* = 5,2 4 5,2 — 2 515,c08(60°) = v2t? + (p? — 2pvt + v?t?) — 2vt(p — vi) '3
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d* =3 v2t2 — 3pvt + p?

The distance d'varies with time tand it is a function of time d(t). To find the shortest distance we
should solve the equation d'(t) = 0.

First we have to find d'(t).

_3v*(2t) —3pv-1+0 3(2 v%t — pv)
23 v2t2 —3pvt +p?  2,/3 v2t2 — 3pvt + p?

d'(t) = (\/3 v2t? — 3pvt + pz) ’

d't)=0if 2v%t—pv=0 > tzzﬂv

Answer: The shortest distance between boats will be at the time t = 2%.

The length of the shortest distance will be as follows.

p? p 3p?  3p?
d= 3 2t2—3 t 2 — 3 2__3 - 2 — M} — 2 —
—\/ v pvt + p? = v4v2 pv2v+p = 4 > +ps =

p
d=—-
2
Example 9:

A man isin a boat at 6 miles offshore, at the point S, and wants to get to a town Q on the shore.
Point Sis d1 = 6 miles away from the closest point P on the shore, point Q is at the distance d
=10 miles down the shore from P.

If the man rows with a speed of vr = 3 miles per hour and walks with a speed of vw =4 miles per
hour at what point R should he land his boat in order to get from point S to point Q in the
shortest possible time?

Solution:

Step 1: Draw a picture introducing the variables.
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7

S
6@

dr = v/d12 4+ x?

(6.81,3.8229)

.

R = (10, 0)

Step 2:

Let is note xthe distance down the shore where the boat is landed. On the figure x is the length
of PR. Then the length RT is d — x = 10 — x [miles].

The question asks us to find the point £ which minimizes rowing time.

Step 3: We have to find the walking time.

Step 4.

d
t, =— The formula for distance d,
vr speed (velocity) and time t
. V36 + x2 v=d/t
e —
3

Using Pythagoras' theorem
d for the right triangle ASPR

ty =—
Vw d, = /d§+x2

10 — x
bw =", = /62+x2=\/36+x2

Since we want to minimize total time by setting the distance x, we should look for a function
t(x) representing the total time to rich the point Q from the point S when x is the distance
down the shore where the boat is landed. Total time has to be converted into a function
minimization problem:

t(x) =t (x) + t,,(x) =

V36 +x2 10—x
3 + 4

Step 5. To solve this minimization problem (find the minimum of t(x)) we should determine the
first derivative with respect to distance x.
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2-x (-1 x 1

t'x)=t'(x)+t,'(x) = + = —
" v 3-2-V36+x2 4  3-V36+x2 4
Setting t'(x)=0 =

4x —3-y36 +x%
4-3+4/36+ x?

4x —3-36+x2=0
4x =3-V36+x2 )/
16x%2 =9- (36 + x2)

0

7x% = 324

324
7

x2

Xx=—=6.8

V7
We get x = 18 ~ 6.8as the only critical value and calculate

V7
V36 +6.82 10-—6.8
t(6.8) = 3 + 2 ~ 3.8229 hours

Step 6:

We have to find a local minimum.

X 1\ X ! 1\
0= ) =) ) -
3:V36+x2 4 3-436 + x2 4
1
. 2 . . - -
_3 V36 +x4—x-3-2x o 3 (36 + x2) — 3x2
9-(36 +x2) 9-(36 + x2) -V/36 + x2
3-(36 +6.8%) —3-6.82
t"(6.8) = ( ) >0
9-(36 + 6.82) - /36 + 6.82

Since, t''(6.8) > 0, there must be a local minimum at x=6.8 , and since this is the only critical
value it must be a global minimum as well.

Example 10:

A rectangular storage container for bulk cargo with an open top, a square base and a volume
of 5000 m3 is to be constructed. What should the dimensions of the container be to minimize
the surface area of the container? What is the minimum surface area?
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Solution:

Let the variable x represent the length of each side of the square base; lety represent the
height of the container and S denotes the surface area of the open-top box.

X
The surface area of the open-top container is calculated according following formula:
S = 4xy + x>
Volume of this container is:
V = x2%y = 5000 m3

5000
>y=

x2

Therefore, we can write the surface area as a function of x only:

5000
S(x) = 4x - —5—+ x*
x
20000
S(x) = +x%,x>0
Critical point:
20000
§'(x) = ——5—+2x=0=x>=10000 = x = 1010
1,
=y =53100
, 20 000
S"(x)=2-———+2
X

S"(10Y10) > 0

Therefore, S(x) has the minimum at the critical point x = 10Y10. It implies that is the
dimensions of the container should be x = 10V 10,y = %3\/ 100.
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20 000 20 000 2 3
S(x) = +x% = +(103¥10)" = 3007/102
(x) = — e T (10V10)

Example 11:

Owners of a boat rental company have determined that if they charge customers p euros per
day to rent a boat, where (50 < p < 200), then the number of boats n they rent per day can
be modelled by the linear function n(p) = 1000 — 5p. If they charge €50 per day or less, they
will rent all their boats. If they charge €200 per day or more, they will not rent any boats.
Assuming the owners plan to charge customers between €50 per day and €200 per day to rent
a boat, how much should they charge to maximize their revenue?

Solution:

From described problem, p denotes the price charged per boat per day, n the number of rented
boats per day and R revenue per day. We have to find the maximum revenue R.

The revenue per day is determined with the number of boats rented per day times the price
charged per boat per day. Thus,

R=n-p= (1000 —5p)-p = —5p? + 1000p

According with the constraint that owners plan to charge between 50 and 200 euro per boat
per day, the problem is to find the maximum revenue R (p) (it must be satisfied p € [50, 200]).

R is a continuous function over the closed, bounded interval [50, 200] and it has an absolute
maximum in that interval.

R'(p) =—10p + 1000 =0 = p =100
R(100) =50 000
p =50 = R(50) =37 500
p =200= R(200)=0
The maximum revenue is reached for p = 100.

As conclusion: owners should charge 100 euro per boat per day to maximize their revenue.

Example 12:

The cargo G lowers according the law; x = 80 - t>°, where x[m] i t[s]. By lowering the cargo,
the drum on which the rope holding the load G is wound is rotated. The angular velocity and
angular acceleration of the drum must be determined.
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Solution:

The translational motion of the load brings the drum into rotational motion. With this
movement, the speed of lowering the load is equal to the circumferential speed of rotational
movement.

The speed of lowering the cargo is

dx d(80-t>%) L5 [M
vE = =200t [?]

The angular velocity of the drum is obtained using the circumferential speed:

v 200t15
V=R:rw,w=—-=
R R

w = 1000 - t*° [s71]

The angular acceleration of the drum is

_dw _ d(1000 - t*5)

= = — L4055 [o—2
- n 1500 - t%5 [s72]

&
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