8 DIFFERENTIAL EQUATIONS

8.1 THE CONCEPT OF DIFFERENTIAL EQUATIONS

Definition: Differential equation

A differential equation is an equation that involves both an unknown function and its derivatives or differentials.

There are ordinary and partial differential equations.

Definition: Ordinary differential equation

A differential equation for a one variable function is called an ordinary differential equation.

The general form of an ordinary differential equation can be written as

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \ldots, y^{(n)}\right)=0
$$

or

$$
F\left(x, y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{3} y}{d x^{3}}, \ldots, \frac{d^{n} y}{d x^{n}}\right)=0
$$

where $y(x)$ is an unknown function and $y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}, \ldots, y^{(n)}=\frac{d^{n} y}{d x^{n}}$ are derivatives of the function $y(x)$.

Example 8.1

The following two equations,

$$
\begin{gathered}
y^{\prime}+x y=x^{3} \\
y^{\prime \prime}-5 y^{\prime}+6 y=13 \sin (3 x)
\end{gathered}
$$

are ordinary differential equations for an unknown one-variable function $\mathrm{y}=\mathrm{y}(\mathrm{x})$.
These equations can be also written as:

$$
\begin{gathered}
\frac{d y}{d x}+x y=x^{3} \\
\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=13 \sin (3 x)
\end{gathered}
$$

Definition: Partial differential equation

A differential equation for a function of several variables is called a partia/ differential equation (PDE). PDE contains partial derivatives.

Example 8.2

The equation of a string vibration

$$
\frac{\partial^{2} \mathrm{U}}{\partial \mathrm{t}^{2}}=\mathrm{a}^{2} \frac{\partial^{2} \mathrm{U}}{\partial \mathrm{x}^{2}}
$$

is a partial differential equation for the function of two variables $U=U(x, t)$.

In this topic only ordinary differential equations of the first and second order will be considered.

Definition: Order of a differential equation

An order of a differential equation is the order of the highest derivative it contains.

Example 8.3

The first order ODE: $\quad y^{\prime}+x y=x^{3}$
The second order ODE: $\quad y^{\prime \prime}-5 y^{\prime}+6 y=13 \sin (3 x)$
The third order ODE: $\quad y^{\prime \prime \prime}-x \ln (x)=0$

Definition: Solution of a differential equation

The solution of a differential equation is any function that satisfies given equation identically. It means that the given equation becomes identical after substituting its solution into the differential equation.

Definition: General and particular solutions of a differential equation

A solution of an ordinary differential equation of order n, which involves exactly n (maximum number) of essential arbitrary constants is called a general solution.

A solution of a differential equation obtained by substituting the defined numerical values instead of arbitrary constants in the general solution of a differential equation is called a particular solution.

Definition: Singular solution of a differential equation

A solution of an ordinary differential equation that does not contain arbitrary constants and cannot be obtained from the general solution is called a singular solution of a differential equation.

