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8.5 CONNECTIONS AND APPLICATIONS 
 

Example 1: 

Ship stability is a maritime safety issue that needs to be explored even at the design stage. 
Rolling and pitching of the ship in the water are extremely important factors affecting the 
stability of a is the  

1) Rolling of a vessel from one side to the another one, occurring in calm water without 
resistance is described by the following second-order differential equation: 

𝜃𝜃" + 𝑠𝑠𝜃𝜃2𝜃𝜃 = 0 

where 𝜃𝜃 = 𝜃𝜃(𝑦𝑦) is the rolling amplitude (Fig.3). 

𝑠𝑠𝜃𝜃  is the circular frequency of free (natural) vibrations during the rolling without resistance. 

 

Figure 8.3 Rolling of a vessel 

This equation is a second-order linear homogeneous differential equation with constants 
coefficients. Let us solve this equation.  

The auxiliary equation is 

𝑘𝑘2 + 𝑠𝑠𝜃𝜃2 = 0, 

whose roots are complex numbers  

𝑘𝑘1 = 𝑠𝑠𝜃𝜃𝑠𝑠  , 𝑘𝑘2 = −𝑠𝑠𝜃𝜃𝑠𝑠   

The general solution of the equation is 

𝜃𝜃(𝑦𝑦) = 𝐶𝐶1 cos(𝑠𝑠𝜃𝜃𝑦𝑦) + 𝐶𝐶2 sin(𝑠𝑠𝜃𝜃𝑦𝑦) 

 

2) Taking into account the resistance during the rolling in calm water, the equation of motion 
of a vessel takes the form 

𝜃𝜃" + 2𝜇𝜇𝜃𝜃𝜃𝜃′ + 𝑠𝑠𝜃𝜃2𝜃𝜃 = 0 
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where 𝜇𝜇𝜃𝜃 is the relative coefficient of resistance. 

The corresponding auxiliary equation is 

𝑘𝑘2 + 2𝜇𝜇𝜃𝜃𝑘𝑘 + 𝑠𝑠𝜃𝜃2 = 0, 

whose roots are  

𝑘𝑘1 = −𝜇𝜇𝜃𝜃 + 𝑠𝑠 �𝜇𝜇𝜃𝜃2 − 𝑠𝑠𝜃𝜃2  , 𝑘𝑘2 = −𝜇𝜇𝜃𝜃 − 𝑠𝑠 �𝜇𝜇𝜃𝜃2 − 𝑠𝑠𝜃𝜃2 

 

𝜃𝜃(𝑦𝑦) = 𝐶𝐶1 e−μθtcos(𝜔𝜔𝜃𝜃 ∙ 𝑦𝑦) + 𝐶𝐶2 e−μθtsin(𝜔𝜔𝜃𝜃 ∙ 𝑦𝑦) 

where 

𝜔𝜔𝜃𝜃 = �𝜇𝜇𝜃𝜃2 − 𝑠𝑠𝜃𝜃2   is a natural (their own) frequency during the rolling with resistance. 

It should be noted that similar differential equations describe also pitching and heaving 
motions of a vessel. 

 

Example 2: 

Any modern vessel is not complete without electrical and electro-mechanical systems. An 
alternating-current electrical circuit is a component of any such system. Transition processes 

in such electrical circuits that occur in a short period of time after switching on or off (after 
connecting the circuit to voltage or after disconnecting the circuit from voltage), as well as 
when the capacitive element is turned on or off, are described by the ordinary differential 
equations. As an example, we can consider one of the easiest electrical circuits: a resistor-

inductor-capacitor circuit (RLC).  

 

Figure 8.4  A resistor-inductor-capacitor circuit 

1) For example, in the case of source of unchanging voltage, the following second-order 
differential equation describes the transition processes in RLC circuit:  

𝐿𝐿
𝑑𝑑2𝑠𝑠
𝑑𝑑𝑦𝑦2

+ 𝑅𝑅
𝑑𝑑𝑠𝑠
𝑑𝑑𝑦𝑦

+
1
𝐶𝐶
𝑠𝑠 = 0 

where  
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t is the time,  

i(t) is the current admitted through the circuit, 

R is the effective resistance of the combined load, source, and components, 

L is the inductance of the inductor component, 

C is the capacitance of the capacitor component. 

This is a homogeneous second-order ordinary differential equation whose characteristic 
equation is 

𝐿𝐿𝑘𝑘2 + 𝑅𝑅𝑘𝑘 +
1
𝐶𝐶

= 0 

or  

𝑘𝑘2 +
𝑅𝑅
𝐿𝐿
𝑘𝑘 +

1
𝐿𝐿𝐶𝐶

= 0 

The roots are 

𝑘𝑘1 = −
𝑅𝑅
2𝐿𝐿

+ ��
𝑅𝑅
2𝐿𝐿
�
2

−
1
𝐿𝐿𝐶𝐶

                  𝑦𝑦𝑠𝑠𝑑𝑑    𝑘𝑘2 = −
𝑅𝑅

2𝐿𝐿
− ��

𝑅𝑅
2𝐿𝐿
�
2

−
1
𝐿𝐿𝐶𝐶

 

The solution of the differential equation has the form 

𝑠𝑠(𝑦𝑦) = 𝐶𝐶1𝑒𝑒𝑘𝑘1𝑡𝑡 + 𝐶𝐶2𝑒𝑒𝑘𝑘2𝑡𝑡 

where  𝐶𝐶1  and 𝐶𝐶2  are terms of amplitude. 

2) If a RL circuit with constant resistance R and inductance L at time t = 0 is connected to voltage 
U0 (for example, battery), then the transition process within a short time period after switching 
on is described by the following  1st order linear inhomogeneous differential equation with 
constant coefficients 

𝐿𝐿
𝑑𝑑𝑠𝑠
𝑑𝑑𝑦𝑦

+ 𝑅𝑅 ∙ 𝑠𝑠 = 𝑈𝑈0 

Example 3: 

Ships often carry containers with various liquids so that liquid leakage problems are essential. 
In this connection, we consider the problem of the liquid flowing out of a cylindrical tank of 
radius R through a small hole of radius r at the bottom of the container.  

https://en.wikipedia.org/wiki/Inductor
https://en.wikipedia.org/wiki/Capacitor
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Liquid level in the tank at time moment t is a function of time which 
is described by the following differential equation:  

𝑅𝑅2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

+ 𝑟𝑟2𝑘𝑘�2g𝑑𝑑 = 0 

where  

     t is time, 

     g is the gravitational acceleration (g=9.80665 m/s2), 

     k is coefficient of the flow rate that depends on the viscosity of  

        the liquid, 

      z=z(t)  is the liquid level above the hole at time moment t . 

 

Assuming, that in the initial time moment t=0 the liquid level was H, let us find: 

a) unknown function of liquid level in the tank  z=z(t) ; 

b) time T during which the liquid will completely  drain out of the tank.  

 

In order to find unknown function of liquid level in the tank z(t), we solve the given 
differential equation. This is a separable-variables equation.  

𝑅𝑅2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑦𝑦

= −𝑟𝑟2�2g ∙ √𝑑𝑑 

𝑑𝑑𝑑𝑑
√𝑑𝑑

= −
𝑟𝑟2

𝑅𝑅2 �
2g𝑑𝑑𝑦𝑦 

�
𝑑𝑑𝑑𝑑
√𝑑𝑑

= −
𝑟𝑟2

𝑅𝑅2 �
2g�𝑑𝑑𝑦𝑦 

2√𝑑𝑑 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑦𝑦 + 𝐶𝐶 

Taking into account, that at the initial time moment t=0 the height of the liquid in the container 
was H, we get 

2√𝐻𝐻 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 0 + 𝐶𝐶 

𝐶𝐶 = 2√𝐻𝐻 

2√𝑑𝑑 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑦𝑦 + 2√𝐻𝐻 

 

Figure 8.5 

 

R
z
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As a result, we obtain the function z (t), which describes the liquid level in the tank at time 
moment t: 

𝑑𝑑(𝑦𝑦) = �−
𝑟𝑟2

2𝑅𝑅2 �
2g ∙ 𝑦𝑦 + √𝐻𝐻�

2

 

In order to find the time T during which the liquid will completely drain out of the tank, we take 
into account, that at the time moment t=T, the level of the liquid in the container will be z=0. 
Then we obtain the dependence of time on the height of the fluid  

2√0 = −
𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑇𝑇 + 2√𝐻𝐻 

𝑟𝑟2

𝑅𝑅2 �
2g ∙ 𝑇𝑇 = 2√𝐻𝐻 

Expressing T, we get the time during which the liquid will completely drain out of the tank. 

𝑇𝑇 =
𝑅𝑅2

𝑟𝑟2
�

2𝐻𝐻
g

 

Example 4: 

There are many marine ecological issues where differential equations are useful. For example, 
the mathematical modelling of propagation and extinction of fish population that is important 
for fish catch control.   

 
Figure 8.6 

 
Fish population P(t) in the lake at the time moment t can be described by the first-order 
differential equation 

𝑑𝑑𝑃𝑃
𝑑𝑑𝑦𝑦

= 𝑘𝑘𝑃𝑃 �1 −
𝑃𝑃
𝑀𝑀
� 

where  
    t is time,    k is the growth parameter,   
     M  is the carrying capacity, representing the largest population that the environment can 
support.  
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If for some reason the population exceeds the carrying capacity, the population will decrease; 
and otherwise, as long as the population is less than the carrying capacity, the population will 
increase. This equation is known as the logistic equation. 

The population P(t) of codfish in a certain marine fishery is modelled by a modified logistic 
equation  

𝑑𝑑𝑃𝑃
𝑑𝑑𝑦𝑦

= 𝑘𝑘𝑃𝑃 �1 −
𝑃𝑃
𝑀𝑀
� − 𝐻𝐻 

where H is the rate at which fish are harvested. 

An important question in this problem is how the fate of the fish population depends on the 
parameter H. 

 

Example 5: 

Differential equations are used in beam theory which is an important tool in the sciences, 
especially in structural and mechanical engineering. It is also very important in ship design. For 
example, we consider the Euler–Bernoulli equation which describes the relationship between 
the beam's deflection and the applied load. A beam is a constructive element capable of 
withstanding heavy loads in bending.  

 Figure 8.7 

 
In the case of small deflections, the beam shape can be described by a fourth-order linear 
differential equation 

𝐸𝐸 ∙ 𝐼𝐼
𝑑𝑑4𝑤𝑤
𝑑𝑑𝑥𝑥4

= 𝑞𝑞(𝑥𝑥) 

where q(x) is external load acting on the beam, 

             E is the modulus of elasticity of the beam, 
              I is the second moment of area of the beam's cross-section. 

q
(
x
) 

x 

w
(
x
) 

https://en.wikipedia.org/wiki/Structural_engineering
https://en.wikipedia.org/wiki/Mechanical_engineering
https://en.wikipedia.org/wiki/Deflection_(engineering)
https://en.wikipedia.org/wiki/Second_moment_of_area
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The curve w(x) describes the deflection of the beam in the direction z at some position x.  
Often, the product 𝐸𝐸 ∙ 𝐼𝐼   is a constant, known as the flexural rigidity. 
This equation under the appropriate boundary conditions determines the deflection of a loaded 
beam. 
 

Example 6: 

Ordinary differential equations are widely used for cooling/heating problems.  

For example, consider a process of cooling down of a heated body placed in an environment. 
The temperature of a hot object decreases with the rate proportional to the difference 
between its temperature and the temperature of the surrounding environment. If the 
temperature of the environment is given by E(t), then the following differential equation 
describes the temperature of the body T(t) as the function of time:  

𝑑𝑑𝑇𝑇
𝑑𝑑𝑦𝑦

= −𝑘𝑘(𝑇𝑇(𝑦𝑦) − 𝐸𝐸(𝑦𝑦)) 

where k>0  is a physical constant depending on the materials and sizes of the bodies. 

If the object, whose temperature is being modelled, contains a source of heat, then the cooling 
of the body is described by the differential equation  

𝑑𝑑𝑇𝑇
𝑑𝑑𝑦𝑦

= −𝑘𝑘(𝑇𝑇(𝑦𝑦) − 𝐸𝐸(𝑦𝑦)) + 𝑚𝑚𝐻𝐻(𝑦𝑦) 

where m is a positive constant, inversely proportional to the heat capacity of the object and 
H(t) denotes the rate that heat is generated within the object. (H(t) would be negative in some 
cases, such as air conditioning).  

 

 

https://en.wikipedia.org/wiki/Flexural_rigidity

