5.2. ANALYSING THE GRAPH OF A FUNCTION

For a given function $f(x)$, set of all pairs $(x, f(x))$ is called the graph of the function.

5.2.1. Sign of a function value

The positive regions of a function are intervals where the function is above the x-axis. Mathematically speaking, function is positive on interval $\langle a, b\rangle$ if $f(x)>0$ for every $x \in\langle a, b\rangle$.

The negative regions of a function are intervals where the function is below the x-axis. Function is negative on interval $\langle a, b\rangle$ if $f(x)<0$ for every $x \in\langle a, b\rangle$.

All points for which $f(x)=0$ are called zeros.

Example 5.4 https://www.geogebra.org/calculator/rvnautep

Find the positive and negative regions of a function.

Figure 5.5

Solution:

Recall that we read function values on the y axis, so for a positive sign we are interested in x values where the y coordinate of that point is greater than 0 .

All points colored blue have a positive functional value, so we say that the function is positive at these intervals. In this task these are intervals $<-3,-1>\cup<1,+\infty>$.

All points colored red have a negative functional value, so we say that the function is negative at these intervals. In this task these are the intervals $<-\infty,-3>\cup<-1,1>$.
+h/c \int

5.2.2. Increasing and decreasing functions

Function is increasing if when x increases, then y also increases. When $x_{1}<x_{2}$ then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$ we say that function is increasing.

Function is decreasing if when x increases, then y decreases. When $x_{1}<x_{2}$ then $f\left(x_{1}\right) \geq f\left(x_{2}\right)$ we say that function is decreasing.

Figure 5.6 https://www.geogebra.org/calculator/mufgrbvs

For all values colored red the function is increasing.
For all values colored blue the function is decreasing.
Example 5.5

Figure 5.7
Find in interval [0,4.5]
All intervals where the function is positive (all x values for which the function value is positive) All zero points
All intervals where the function is decreasing.

Solutions:

a) $\quad x \in\langle 0,0.5\rangle \cup\langle 1.5,2.5\rangle \cup\langle 3.5,4.5\rangle$
b) Zero points are $(0,0),(0.5,0),(1.5,0),(2.5,0),(3.5,0),(4.5,0)$
c) $\quad x \in\langle 0.5,1.5\rangle \cup\langle 2.5,3.5\rangle$

