

Exercises

Task 5.18Solve the equations:

a)
$$3^{x+2} - 3^{x-1} = \frac{26}{9}$$
.
b) $3 \cdot 5^x - 2 \cdot 5^{x-1} = 5^{x+1} - \frac{12}{5}$.
c) $\frac{3}{10} \cdot \left(\frac{3}{2}\right)^{x-2} = \frac{6}{5} \left(\frac{3}{2}\right)^{x-3} - \frac{1}{2}$.
d) $4^{\frac{1}{2}x-1} = 2^{3(x+1)}$.
e) $2^{x^2-6x-\frac{5}{2}} = 16\sqrt{2}$.
f) $2^{2x} + 2^x = 20$.
g) $3^{2x} - 4 \cdot 3^x + 3 = 0$.
h) $\sqrt{2^x} \cdot \sqrt{3^x} = 6^x - 30$

i)
$$2^x + 3^x = 3^{x+1} - 2^{x+1}$$
.

Task 5.19 Solve inequalities:

a)
$$\left(\frac{8}{9}\right)^{8x^2-9} \ge \left(\frac{9}{8}\right)^{9x^2-8}$$
.
b) $\left(\frac{1}{2}\right)^{2x^2+x-1} > \left(\frac{1}{4}\right)^{\frac{1}{2}x^2+x-\frac{1}{8}}$.
c) $\left(\frac{1}{3}\right)^{|x-3|} \le \frac{1}{9}$.
d) $5 \cdot 4^x + 2 \cdot 25^x \le 7 \cdot 10^x$.
e) $2^{x+3} - 5^x < 7 \cdot 2^{x-2} - 3 \cdot 5^{x-1}$.
f) $7^{-x} - 3 \cdot 7^{x+1} \ge 4$

- Task 5.20 Suppose in 2020 a man purchased a motor yacht Chris Craft Launch 25GT valued at \$234 750. We know that yacht depreciate at 11.2% each year. What would the value of the yacht be in 2026?
- Task 5.21 The taxation department allows depreciation of 25% pa on the diminishing value of some kind of computer devices installed on yachts produced by a boatyard. If a boatyard installs computers valued at \$120 000, construct a depreciation schedule for the next five years presenting the information in the table.
- Task 5.22 The voltage (V measured in volts) across a capacitor is modelled by the equation $V = 10e^{\frac{-t}{3}}$, where t is measured in seconds. Find V when t = 5.

- Task 5.23The decay of radium is modelled by the function $R = R_0 e^{-0.077t}$, where R is the amount
remaining (g), t is time (weeks) and R_0 is the original amount.
Generate a table of values to find the half-life of 10 g of radium.(Remember that half-life
means time to reach half of the original amount).
- Task 5.24 Carbon dating involves the measurement of concentration of carbon remaining in an object. The decay function $C = 100 \cdot 2^{-0,1786t}$ is used to determine the age of a bone taken from an archaeological dig, where C is the concentration remaining and t is time in thousands of years. It is found that 60% of the original carbon remains in the samples. Estimate the age of the bone. (Hint: Develop a table of values for the inverse function and find when C = 60).

Answers

5.18.

- a) x = -1b) x = 0
- c) x = 2

d) $x = -\frac{5}{2}$ e) x = -1 or x = 7f) x = 2

- - a) $x \in [-1, 1]$
- c) $x \in (-\infty, 1] \cup [5, \infty)$
- g) x = 0 or x = 1h) x = 2i) x = 1.

- 5.19.
 - b) $x \in \left(-\frac{1}{2}, \frac{3}{2}\right)$
- d) $x \in [0, 1]$
- e) $x \in (3, \infty)$
 - f) $x \in (-\infty, -1]$

5.20. \$115102.14

5.21.

Year 1	\$90000
Year 2	\$67500
Year 3	\$50625
Year 4	\$37968.75
Year 5	\$28476.56

5.23.

Original function				
Weeks t	Radium $f(t)$ (g)			
0	10,00			
1	9,26			
2	8,57			
3	7,94			
4	7,35 6,80			
5				
6	6,30			
7	5,83			
8	5,40			
9	5,00			

From the table we see that 10 grams of radium is reduced to 5 grams in 9 weeks.

г	24
Э.	24.

5.24.						
Original	function	Inverse function				
Thousands	Carbon	Carbon	Thousands			
of years t			of years t			
0	100	100	0			
1	88	88	1			
2	78	78	2			
3	69	69	3			
4	61	61	4			
5	54	54	5			

If we start with 100 g then 60% will occur when we have 60 g. From either table we can see that we have $60 \ g$ when the bone is $4 \ 000$ years old.

Sample chapter exam

- 1. Solve the equation: $2 \cdot 4^{\sqrt{x}} = \sqrt[4]{2} \cdot 8^{x-1}$.
- 2. Solve the inequality: $5^{x} 20 > 5^{3-x}$.
- 3. Find all the values of x for which f(x) > 0, if $f(x) = \left(\frac{3}{5}\right)^{x^2 x 6} 1$.
- 4. There are given functions: $f(x) = 4^{x+1} 7 \cdot 3^x$ and $g(x) = 3^{x+2} 5 \cdot 4^x$. Solve the inequality $f(x) \le g(x)$.
- 5. Find the domain and a range of a function $f(x) = e e^x$.
- 6. The equation $P = 20 \cdot 10^{0,1n}$ can be used to convert any number of decibels (n) to the corresponding number of micropascals (P) used to measure loudness. Show that a 60 decibel sound is 10 times as loud as a 50 decibel sound, and 100 times as loud as a 40 decibel sound.

