

Exercises

Task 5.25 Evaluate:

a.
$$\log_{\sqrt{2}} 16$$

b.
$$\log_2 \frac{1}{8}$$

d.
$$\log_{\sqrt{2}} 0.25$$

e.
$$\log_{\frac{2}{3}} 2.25$$

f.
$$\log_{\frac{1}{9}} 3\sqrt[3]{3}$$

g.
$$16^{\log_2 3}$$
.

Task 5.26 Evaluate $\log_{35} 28$ if we know that $\log_{14} 2 = a$, $\log_{14} 5 = b$.

Task 5.27 Solve the equations:

a.
$$ln(5x - e) = 1$$

b.
$$\log_{1.5}(2x - \sqrt[3]{1.5}) = \frac{1}{3}$$

c.
$$\log_x 3\sqrt{3} = \frac{1}{2}$$

d.
$$\log_{\frac{3}{4}} \left(1 - \frac{x-2}{2x-5} \right) = -1$$

e.
$$ln(log_2 x) = 0$$
.

Task 5.28 Solve the equations:

a.
$$\log_3(x+\sqrt{3}) = -\log_3(x-\sqrt{3})$$

b.
$$\log_3(5x+1) - \log_3(x-1) = 2$$

c.
$$\log_4 x + \log_4 (12 - 2x) = 2$$

d.
$$\log(5-x) + 2\log\sqrt{x-3} = 0$$

e.
$$\frac{1}{2}\log(2x+7) + \log\sqrt{7x+5} = 1 + \log\frac{9}{2}$$

f.
$$\log_3 x + \log_5 x = \frac{\log 15}{\log 3}$$

g.
$$(\log_3 x)^2 = \frac{1}{2}\log_3 x$$
.

Task 5.29 Solve inequalities

a.
$$\log(x-3) - \log(27-x) \le -\log 5 - 1$$

b.
$$\log_{\frac{1}{2}}(\log_5 x) \ge 0$$

c.
$$\log_{\frac{1}{3}}(|x|-1) > -2$$

d.
$$3^{\log_{\frac{1}{5}}(x^2-4x-4)} < 1$$

e.
$$\log_{x^2}(x+6) \ge 1$$

f.
$$\log_{\frac{1}{2}} \frac{2x+1}{3x+2} > 3$$

Task 5.30 A particular dangerous bacteria culture, that threatens the marine fauna of the Maldives, doubles every 20 minutes and follows the exponential function $N(t) = 200 \cdot 2^{3t}$, where N(t) is the number of bacteria in the culture after t hours. After how many hours will be $1\,000\,000$ bacteria in the culture?

Rearrange the following formula to make x the subject: $y = 1.4e^{-0.6x} - 3$. Task 5.31

Answers

4.24

a. 8 c. $-\frac{1}{2}$ d. -4 f. $-\frac{2}{3}$ g. 81 b. -3 e. -2

4.25.
$$\frac{a+1}{b-a+1}$$

4.26.

a. $x = \frac{2}{5}e$ b. $x = \sqrt[3]{1.5}$ c. x = 27 d. $x = \frac{11}{5}$ e. x = 2

4.27.

h.

4.28.

a. $x \in (3, \frac{59}{17}]$

b. $x \in (1,5]$

c. $x \in (-10, -1) \cup (1, 10)$ f. $x \in \left(-\frac{1}{2}, -\frac{6}{13}\right)$

d. $x \in (-\infty, -1) \cup (5, \infty)$

e. $x \in [-2, -1) \cup (1, 3]$

4.29. After approximately 4.096 hours there will be $1\,000\,000$ bacteria in the culture.

4.30. $x = -\frac{5}{3} \ln \left(\frac{y+3}{1.4} \right)$.

Sample chapter exam

- 1. Prove the following statements:
 - a. $\log_{\sqrt{a}} x = 2 \log_a x$,
 - a. $\log_{\frac{1}{\sqrt{a}}} \sqrt{x} = -\log_a x$,
 - c. $\log_{a^4} x^2 = \log_a \sqrt{x}$.
- 2. Solve the equation: $\log_{\frac{1}{2}}[\log_2(\log_4 x)] = -1$.
- 3. Solve the inequality: $\log_{\frac{1}{\sqrt{\epsilon}}} (6^{x+1} 36^x) \ge -2$.
- 4. Find the domain of the function: $f(x) = \log_{x^2-3}(x^2 + 2x 3)$.
- 5. Draw the graph of each of the following logarithmic functions and analyze each of them completely (i.e., domain, range, zeros, y –intercept, sign, maximal intervals of monotonicity):
 - a. $f(x) = \log(-x)$,
 - b. $f(x) = -\log(x 3)$.
- 6. If $y = 3(\mu e)^k$ show that $k = \frac{\ln y \ln 3}{\ln y + 1}$.
- 7. If $A = P(1+i)^n$, find n in terms of A, P and i.
- 8.* Solve the inequality without using a calculator: $\log_{2008}(x^2 2007x) \le 1$.