

Exercises

Task 5.32 Solve the equations.

a.
$$(x^2 - 4)\sqrt{1 - x} = 0$$
.

b.
$$x - \sqrt{x+1} = 5$$
.

c.
$$x + \sqrt{10x + 6} = 9$$
.

d.
$$\sqrt{4+2x-x^2} = x-2$$
.

e.
$$\sqrt{2x-3} + \sqrt{4x+1} = 4$$
.

f.
$$x = 15 + \sqrt{9 + 8x - x^2}$$
.

Task 5.33 Solve the inequalities.

a.
$$\sqrt{5-x} < -2$$
.

b.
$$\sqrt{x+3} > -23$$
.

c.
$$\sqrt{2x+3} > x+2$$
.

d.
$$\sqrt{x+3} + \sqrt{3x-2} \le 7$$
.

e.
$$\sqrt{x-2} + x > 4$$
.

f.
$$\sqrt{8-x} > x - 6$$
.

Task 5.34 The circular velosity, v, in miles per hour, of a satellite orbiting Earth is given by the formula $v=\sqrt{\frac{1.24\cdot10^{12}}{r}}$, where r is a distance in miles from the satellite to the center of the Earth. How much greater is the velocity of a satellite orbitting at an altitude of $100\,$ mi than one orbitting at $300\,$ mi?

(Radius of a the Earth is 3950 mi, 1 mi = 1,609344 km)

Figure 5.42

<u>Answers</u>

5.33

a. $x_1 = -2$, $x_2 = 1$.

b. x = 8.

c. x = 3.

d. x = 3.

e. x = 2.

f. No solutions.

5.34

a. No solutions.

b. $x \in [-3, \infty)$

c. No solutions.

d. $x \in \left[\frac{2}{3}, 6\right]$.

e. $x \in (3, \infty)$.

f. $x \in (-\infty, 7)$.

5.35 The velocity of a satellite orbitting at an altitude of $100\,$ mi is $1.024\,$ times greater than one orbitting at $300\,$ mi.

Sample chapter exam

1. Determine in which set the functions are equal:

$$f(x) = \sqrt{(x-1)(x-5)}$$

$$f(x) = \sqrt{(x-1)(x-5)}$$
 and $g(x) = \sqrt{(x-1)} \cdot \sqrt{x-5}$.

2. _Solve the equations.

$$a. \sqrt{x+3} + \sqrt{x} = 3.$$

b.
$$3 - \sqrt{x - 1} = \sqrt{3x - 2}$$
.

c.
$$(x^2 + x - 6)^{0.5} = \frac{1}{2}x - 1$$
.

3. Solve the inequalities.

a.
$$x - 1 < \sqrt{7 - x}$$
.

b.
$$\sqrt{(x-6)(1-x)} < 2x + 3$$
.

c.
$$\sqrt{1+10x+5x^2} \ge 7-2x-x^2$$
.

4.* Find the domain of the given function $f(x) = \log_{17}(x + \sqrt{x^2 + 1})$.