5.5. Functions of form $\frac{1}{x^{p}}$

Aims:

1) Students know that $\frac{1}{x^{p}}$ is special case of the power function $y=k x^{p}$
2) Students know what special property's function $\frac{1}{x^{p}} m$ ay exhibit when p is odd and when p is even.
3) Apply these properties in graphing function $\frac{1}{x^{p}}$.

Definition of power function

Definition:

A power function is a single - term function that contains a variable as its base and a constant for its exponent.

In case of function $y=\frac{1}{x^{p}}$ we speak about power functions where $k=1$ and $p<0$.

Power functions where $p=-1,-3,-5, \ldots$

Figure 5.43 Graph 1

Properties:

- Domain: $X \neq 0$
- Domain of variation: $Y \neq 0$
- Eveness and odness: $y(-x)=-y(x) \rightarrow$ odd
- Monotomy: monotonus
- Extremes: none
- Intersection points with coordinate axes: none
- Domain of convexity: $\check{X}=(-\infty ; 0) ; \hat{X}=(0 ;+\infty)$
- Inflection point: none
- Inverse functions:
- If $p=-1$, then $x=\frac{1}{y}$
- If $p<-2$, then $x=\frac{1}{\mid \sqrt{|p|} \sqrt{y}}$

Power functions where $p=-2,-4,-6, \ldots$

Figure 5.44 Graph 2

Properties:

- Domain: $X \neq 0$
- Domain of variation: $Y>0$
- Eveness and odness: $y(-x)=-y(x) \rightarrow$ odd
- Monotomy: $X \uparrow=(-\infty ; 0) ; X \downarrow=(0 ;+\infty)$
- Extremes: none
- Intersection points with coordinate axes: none
- Domain of convexity: $\hat{X}=(-\infty ; 0)$
- Inflection point: none
- Inverse functions:
- If $p=-2$, then $x=\frac{1}{\sqrt{y}}$
- If $p<-2$, then $x=\frac{1}{\sqrt[|p|]{y}}$

