

5.5. Functions of form $\frac{1}{x^p}$

Aims:

- 1) Students know that $\frac{1}{x^p}$ is special case of the power function $y = kx^p$
- 2) Students know what special property's function $\frac{1}{x^p}$ m ay exhibit when p is odd and when p is even.
- 3) Apply these properties in graphing function $\frac{1}{x^p}$.

Definition of power function

Definition:

A power function is a single – term function that contains a variable as its base and a constant for its exponent.

In case of function $y = \frac{1}{x^p}$ we speak about power functions where k = 1 and p < 0.

Power functions where p = - 1*,* - 3*,* - 5*,* ...

Properties:

- Domain: $X \neq 0$
- Domain of variation: $Y \neq 0$
- Eveness and odness: $y(-x) = -y(x) \rightarrow \text{odd}$
- Monotomy: monotonus
- Extremes: none
- Intersection points with coordinate axes: none
- Domain of convexity: $\check{X} = (-\infty; 0); \hat{X} = (0; +\infty)$
- Inflection point: none
- Inverse functions:

• If
$$p = -1$$
, then $x = \frac{1}{y}$
• If $p < -2$, then $x = \frac{1}{|p|} \frac{1}{\sqrt{y}}$

Power functions where p = *- 2, - 4, -6, ...*

Figure 5.44 Graph 2

Properties:

- Domain: $X \neq 0$
- Domain of variation: Y > 0
- Eveness and odness: $y(-x) = -y(x) \rightarrow \text{odd}$
- Monotomy: $X \uparrow = (-\infty; 0); X \downarrow = (0; +\infty)$
- Extremes: none
- Intersection points with coordinate axes: none
- Domain of convexity: $\hat{X} = (-\infty; 0)$
- Inflection point: none
- Inverse functions:

• If
$$p = -2$$
, then $x = \frac{1}{\sqrt{y}}$
• If $p < -2$, then $x = \frac{1}{|p|/\overline{y}|}$

