5.7. INVERSE TRIGONOMETRIC FUNCTIONS

DETAILED DESCRIPTION:

Inverse trigonometric functions are used in solving trigonometric equations that arise in finding the angles and sides of triangle. The inverse of any function is important - it provides a way to "get back."

AIM:

The students will learn how to interpret and graph an inverse trig. Function and will also learn to solve for an equation with an inverse function.

Learning Outcomes:

- 1. Understand and use the inverse sine function.
- 2. Understand and use the inverse cosine function.
- 3. Understand and use the inverse tangent function.
- 4. Use a calculator to evaluate inverse trigonometric functions.
- 5. Find exact values of composite functions with inverse trigonometric functions

Prior knowledge:

If no horizontal line intersects the graph of a function more than once, the function is one-to-one and has an inverse function.

If the point (a, b) is on the graph of f, then the point (b, a) is on the graph of the inverse function, denoted $f^{-1}.$ The graph of f^{-1} is a reflection of the graph of about the line y = x.

Relationship to real maritime problems:

Contents:

The Inverse Sine Function

The Inverse Cosine Function

The Inverse Tangent Function

Composition of Functions Involving Inverse Trigonometric Functions

The inverse sine function

[Figure 5.69](#page-1-0) shows the graph of $y = \sin x$. Can we see that every horizontal line that can be drawn between -1 and 1 intersects the graph infinitely many times? Thus, the sine function is not one-toone and has no inverse function.

Figure 5.69 The horizontal line test shows that the sine function is not one-to-one and has no inverse function.

Figure 5.70 The restricted sine function passes the horizontal line test. It is one-to-one and has an inverse function.

In *[Figure 5.70](#page-1-1)*, we have taken a portion of the sine curve, restricting the domain of the sine function to $-\frac{\pi}{2}$ $\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ $\frac{\pi}{2}$. With this restricted domain, every horizontal line that can be drawn between -1 and 1 intersects the graph exactly once. Thus, the restricted function passes the horizontal line test and is one-to-one.

On the restricted domain $-\frac{\pi}{3}$ $\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ $\frac{\pi}{2}$, $y = \sin x$ has an inverse function.

The inverse of the restricted sine function is called the inverse sine function. Two notations are commonly used to denote the inverse sine function:

 $y = \arcsin x$ or $y = \sin^{-1} x$.

We will use $y = \arcsin x$.

Definition:

The inverse sine function, denoted by arcsin x, is the inverse of the restricted sine function $y =$ sin $x, -\frac{\pi}{2}$ $\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ $\frac{\pi}{2}$. Thus,

$$
y = \arcsin x \quad \text{means} \quad \sin y = x,
$$

where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ and $-1 \le x \le 1$. We read $y = \arcsin x$ as "y equals the inverse sine at x."

One way to graph $y = \arcsin x$ is to take points on the graph of the restricted sine function and reverse the order of the coordinates. For example [Figure 5.71](#page-2-0) <code>shows</code> that $\left(-\frac{\pi}{2}\right)$ $(\frac{\pi}{2}; -1)$, (0; 0) and $(\frac{\pi}{2})$ $\frac{\pi}{2}$; 1) are on the graph of the restricted sine function. Reversing the order of the cordinates gives $\left(1;-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$),

Co-funded by the Erasmus+ Programme of the European Union

 $(0; 0)$ and $\left(1; \frac{\pi}{2}\right)$ $\frac{\pi}{2}$). We now use these three point to sketch the inverse sine function. The graph of $y=$ arcsin x is shown in *[Figure 5.72](#page-2-1)*.

Figure 5.71 The restricted sine function, Domain: $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$, Range: $[-1,1]$

Figure 5.73 Using a reflection to obtain the graph of the inverse sine function.

terms of an angle, we will represent such an angle by φ .

FINDING EXACT VALUES OF ARCSIN x

- 1. Let $\arcsin x = \varphi$.
- 2. Rewrite $\arcsin x = \varphi$ as $\sin \varphi = x$, where $\varphi \epsilon \left[-\frac{\pi}{2} \right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$.
- 3. Use the exact values in Table 1 to find the value of φ in $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$ that satisfies **Sin** $\varphi = x$ **.**

Figure 5.72 The graph of the inverse sine f unction, Domain $[-1,1]$, Range: $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}, \frac{\pi}{2}$ $\frac{\pi}{2}$

Another way to obtain the graph o $y =$ arcsin xf is to reflect the graph of the restricted sine function about the line $y = x$, shown in Figure 5.The red graph is the restricted sine function and the blue graph is the graph of $y = \arcsin x$. Exact values of $arcsin x$ can be found by thinking of $\arcsin x$ as the angle in the interval $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$ whose sine is x. For example, we can use the two points on the blue graph of the inverse sine function in [Figure 5.73](#page-2-2) to write

 $\arcsin(-1) = -\frac{\pi}{2}$ $\frac{\pi}{2}$; arcsin(1) = $\frac{\pi}{2}$ $\frac{\pi}{2}$. Because we are thinking of $arcsin x$ in

Innovative Approach in Mathematical Education for Maritime Students

2019-1-HR01-KA203-061000

Table 1 Exact values for $sin \varphi$ *,* $\varphi \epsilon \left[-\frac{\pi}{2} \right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$

NB! Some inverse sine expressions cannot be evaluated. Because the domain of the inverse sine function is $[-1, 1]$ it is only possible to evaluate for values of x in this domain. Thus, arcsin(3) cannot be evaluated. There is no angle whose sine is 3.

5.7.2. The inverse cosine function

[Figure 5.74](#page-4-0) shows how we restrict the domain of the cosine function so that it becomes one-to-one and has an inverse function. Restrict the domain to the interval $[0; \pi]$, shown by the light green graph. Over this interval, the restricted cosine function passes the horizontal line test and has an inverse function.

Figure 5.74 y=cos x is one-to one on interval $(0; \pi)$

Definition: The inverse cosine function, denoted by $arccos x$, is the inverse of the restricted cosine function $y = \cos x$, $0 \le x \le \pi$. Thus,

 $y = \arccos x$ means $\cos y = x$, where $0 \le y \le \pi$ and $-1 \le x \le 1$.

One way to graph $y = \arccos x$ is to take points on the graph of the restricted cosine function and reverse the order of the coordinates. For example, *Figure 5.75* shows that $(0, 1)$, $\left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}$, 0) and $(\pi, -1)$ are on the graph of the restricted cosine function. Reversing the order of the coordinates gives $(1,0)$,

$$
\left(0,\frac{\pi}{2}\right)
$$
 and $\left(-1,\pi\right)$.

We now use these three points to sketch the inverse cosine function. The graph of $y = \arccos x$ is shown

in *[Figure 5.76](#page-4-2)*. You can also obtain this graph by reflecting the graph of the restricted cosine function about the line $y = x$.

Figure 5.75 The restricted cosine function, Domain: $[0; \pi]$ *, Range:* $[-1, 1]$ *.*

Figure 5.76 The graph of the inverse cosine function

Exact values of $y = \arccos x$ can be found by thinking of $\arccos x$ as the angle in the interval $[0, \pi]$ whose cosine is x .

FINDING EXACT VALUES OF ARCCOS x

- 1. Let $\arccos x = \varphi$.
- 2. Rewrite **arccos** $x = \varphi$ as **cos** $\varphi = x$, where $\varphi \epsilon [0; \pi]$.
- 3. Use the exact values in Table 2 to find the value of φ in $[0; \pi]$ that satisfies $\cos \varphi = x$.

Table 2 Exact values for $cos \varphi$ *,* $\varphi \epsilon [0; \pi]$ *.*

5.7.3. The inverse tangent function

[Figure 5.77](#page-7-0) shows how we restrict the domain of the tangent function so that it becomes one-toone and has an inverse function. Restrict the domain to the interval $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$) shown by the solid blue graph. Over this interval, the restricted tangent function passes the horizontal line test and has an inverse function.

Figure 5.77 $y = tan x$ *is one-to-one on the interval* $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$).

Definition:

The inverse sine function, denoted by arctan x, is the inverse of the restricted tangent function $y =$ tan $x, -\frac{\pi}{3}$ $\frac{\pi}{2}$ < x < $\frac{\pi}{2}$ $\frac{\pi}{2}$. Thus, $y = \arctan x$ means $\tan y = x$, where $-\frac{\pi}{2}$ $\frac{\pi}{2}$ < x < $\frac{\pi}{2}$ $\frac{\pi}{2}$ and $-\infty < x < \infty$. We read $y = \arctan x$ as " y equals the inverse tangent at x ."

We graph $y = \arctan x$ by taking points on the graph of the restricted function and reversing the order of the coordinates. *[Figure 5.78](#page-8-0)* shows that $\left(-\frac{\pi}{4}\right)$ $\frac{\pi}{4};-1\Big)$, $(0,0)$, $\Big(\frac{\pi}{4}\Big)$ $\frac{\pi}{4}$; 1) and are on the graph of the restricted tangent function. Reversing the order gives $\left(-1, -\frac{\pi}{4}\right)$ $\left(\frac{\pi}{4}\right)$, $(0,0)$ and $\left(1,\frac{\pi}{4}\right)$ $\frac{\pi}{4}$). We now use these three points to graph the inverse tangent function. The graph of $y = \arctan x$ is shown in *[Figure 5.79](#page-8-1)*. Notice that the vertical asymptotes become horizontal asymptotes for the graph of the inverse function.

2019-1-HR01-KA203-061000

Figure 5.78 The restricted tangent function, Domain: $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$), Range: (−∞; ∞)*.*

Exact values of $y = \arctan x$ can be found by thinking of $\arctan x$ as the angle in the interval $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$) whose tangent is *x*.

FINDING EXACT VALUES OF ARCTAN x

- 1. Let $\arctan x = \varphi$.
- 2. Rewrite
- 3. **arctan** $x = \varphi$ as $\tan \varphi = x$, where $\varphi \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$).
- 4. Use the exact values in Table 2 to find the value of $\pmb{\varphi}$ in $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$) that satisfies **tan** $\varphi = x$.

Table 3 Exact values for $tan \varphi$ *,* $\varphi \epsilon$ $\left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$).

2019-1-HR01-KA203-061000

5.7.4. COMPOSITION OF FUNCTIONS INVOLVING INVERSE TRIGONOMETRIC **FUNCTIONS**

Inverse properties

The restrictions on in the inverse properties are a bit tricky. For example,

$$
\arcsin\left(\sin\frac{\pi}{4}\right)=\frac{\pi}{4}.
$$

We know that $\arcsin(\sin x) = x$, for every $x \in \left[-\frac{\pi}{3}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$. Observe that $\frac{\pi}{4}$ is in interval $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$. But we cannot use $\arcsin(\sin x) = x$ to find the exact value of $\arcsin\left(\sin\frac{5\pi}{4}\right) = \frac{5\pi}{4}$ $\frac{5\pi}{4}$, because $\frac{5\pi}{4}$ is not in interval $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\left(\frac{\pi}{2}\right)$. Thus, to evaluate $\arcsin\left(\sin\frac{5\pi}{4}\right) = \frac{5\pi}{4}$ $\frac{5\pi}{4}$, we must first find $\sin \frac{5\pi}{4}$. Value $\frac{5\pi}{4}$ is in quadrant III, where the sine is negative.

$$
\sin\frac{5\pi}{4} = \sin\left(2\pi - \frac{\pi}{4}\right) = -\sin\frac{\pi}{4} = -\frac{\sqrt{2}}{2}
$$
 (the reference angle for $\frac{5\pi}{4}$ is $\frac{\pi}{4}$).

We evaluate $\arcsin\left(\sin\frac{5\pi}{4}\right)$ as follows:

$$
\arcsin\left(\sin\frac{5\pi}{4}\right) = \arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4}.
$$

To determine how to evaluate the composition of functions involving inverse trigonometric functions, first examine the value of sin(). You can use the inverse properties in the box only if x is in the specified interval.

MARE

We can use points on terminal sides of angles in standard position to find exact values of expressions involving the composition of a function and a different inverse function.

Innovative Approach in Mathematical Education for Maritime Students

Innovative Approach in Mathematical Education for Maritime Students

2019-1-HR01-KA203-061000

$$
\cos\left(\arctan\frac{5}{12}\right) = \cos\varphi = \frac{\text{side adjacent to } \varphi, \text{ or } x}{\text{hypotenuse, or } r}
$$
 We use $x = 2\sqrt{2}$ and $y = -1$ to find the exact value of $\cot\left(\arcsin\left(-\frac{1}{3}\right)\right)$.
= $\frac{12}{13}$.

$$
\cot\left(\arcsin\left(-\frac{1}{3}\right)\right) = \cot\varphi = \frac{x}{y} = \frac{2\sqrt{2}}{-1} = -2\sqrt{2}.
$$

Some composite functions with inverse trigonometric functions can be simplified to algebraic expressions. To simplify such an expression, we represent the inverse trigonometric function in the expression by φ . Then we use a right triangle.

Example 5.61 Simplifying an expression involving arcsin x

If $x \in (0, 1]$, write $cos(arcsin x)$ as an algebraic expression in x.

Solution:

We let $\pmb{\varphi}$ represent the angle in $\left[-\frac{\pi}{2}\right]$ $\frac{\pi}{2}$; $\frac{\pi}{2}$ $\frac{\pi}{2}$ whose sine is **x**. Thus,

$$
\boldsymbol{\varphi} = \arcsin x \text{ and } \sin \boldsymbol{\varphi} = x \text{, where } x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right].
$$

Because $x \in (0, 1]$, sin φ is positive. Thus, φ is the I-quadrant angle and can be represented as an acute angle of a right triangle.

[Figure 5.82](#page-13-0) shows a right triangle with

 $\sin \varphi = x =$ $\boldsymbol{\chi}$ $\mathbf{1}$. Side opposite φ hypotenuse

The third side a , in Figure 14, can be found using the Pythagorean Theorem.

Figure 5.82 Representing $\sin \varphi = x$.

 $1^2 = a^2 + x^2$ $a^2 = 1^2 - x^2$ $a = \sqrt{1^2 - x^2}$

We use the right triangle in *Figure* 5.82 to write $cos(arcsin x)$ as an algebraic expression.

$$
\cos(\arcsin x) = \cos \varphi = \frac{\text{side adjacent to } \varphi}{\text{hypotenuse}} = \frac{a}{\text{hypotenuse}} = \frac{\sqrt{1^2 - x^2}}{1} = \sqrt{1^2 - x^2}.
$$

