BASIC MATH FORMULAS

SETS

Universal Set (*U*) is the set of all elements under consideration in the context we are studying. RELATIONS

Subset: A set A is a *subset of a set* B, if and only if every element of the set A is contained in the set B. It is denoted by $A \subset B \iff (\forall x) : (x \in A \Longrightarrow x \in B)$.

Set Equality: A set A is *equal* to a set B, if and only if every element from A is also in B, and every element in B is also in A. It is denoted by $A = B \iff (\forall x) : (x \in A \Leftrightarrow x \in B)$.

Set Inequality: Two sets A and B are unequal if there is an element in A that is not in B or reverse.

Disjoint sets: Two sets A and B are disjoint if they do not have any shared elements; i.e., their intersection is the empty set.

OPERATIONS

Intersection of sets A and B are common elements to both. It is denoted by $A \cap B = \{x \in U \mid x \in A \ i \ x \in B\}$. **Union** of two sets A and B is the set of elements which are in A or in B or in both. It is denoted by $A \cup B = \{x \in U | x \in A \ ili \ x \in B\}$.

Difference of sets A and B, denoted A\B, is the set consists of elements that are in A but not in B.

 $A \backslash B = A \cap B^c = \{ x \in U | x \in A \ i \ x \notin B \}.$

Symmetric difference of sets A i B is the set of elements which are in either of the sets but not in both. It is denoted by

 $A\Delta B = A \setminus B \cup B \setminus A = \{x \in U \mid x \in A \setminus B \text{ ili } x \in B \setminus A\}.$ **Complement** of a set A contains the elements present in universal set but not in A: $A^c = \{x \in U \mid x \notin A\}.$ <u>PROPERTIES</u>

commutability: $A \cap B = B \cap A$, $A \cup B = B \cup A$ associativity: $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B)C = A \cap (B \cap C)$ idempotency: $A \cup A = A$, $A \cap A = A$ distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ involution: $(A^c)^c = A$ **De Morgan**: $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$

ALGEBARIC EXPRESSIONS

$$(a\pm b)^{2} = a^{2}\pm 2ab + b^{2}$$

$$(a\pm b)^{3} = a^{3}\pm 3a^{2}b + 3ab^{2} + b^{3}$$

$$a^{2} - b^{2} = (a - b)(a + b)$$

$$a^{3}\pm b^{3} = (a\pm b)(a^{2}\mp ab + b^{2})$$

$$a^{4} - b^{4} = (a - b)(a + b)(a^{2} + b^{2})$$

$$(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$$

EXPONENT RULES	ROOTS
$a^0 = 1$, $a \neq 0$	$a^n = b \iff a = \sqrt[n]{b}$
$a^m a^n = a^{m+n}$	$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$
a^m : $a^n = a^{m-n}$, $a \neq 0$	$n \sqrt{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt{a}}$
$(ab)^n = a^n b^n$	\sqrt{b}
$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$	$\sqrt[n]{a^m} = \sqrt[n^p]{a^{mp}}$
$(a^m)^n = a^{mn}$	$\int_{a}^{n} \sqrt[m]{a} = \sqrt[nm]{a} = a^{\frac{1}{nm}}$
$a^{-n} = \frac{1}{a^n}, a \neq 0$	$\sqrt[m]{a^n} = a^{\underline{n}}$

QUADRATIC EQUATION

$$ax^{2} + bx + c = 0, \qquad a \neq 0$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
$$ax^{2} + bx + c = a (x - x_{1}) (x - x_{2})$$

FACTORIALS AND BINOMIAL FORMULA	TRIGONOMETRY TABLE									
$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (n-2) \cdot (n-1) \cdot n$, $n \in N$; $0! = 1$			0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$\binom{n}{2} = \frac{n!}{2} = \frac{n(n-1)(n-2)\dots(n-(k-1))}{k \leq n n k \in N}$			0	30°	45°	60°	90°	180°	270°	360°
$\binom{k}{k} - \frac{k!}{k! (n-k)!} - \frac{k!}{k!} \qquad k!$		sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\binom{n}{0} = 1, \ \binom{n}{n} = 1, \ \binom{n}{1} = \binom{n}{n-1} = n, \ \binom{n}{k} = \binom{n}{n-k}$		cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$(a+b)^{n} = {\binom{n}{0}} a^{n} b^{0} + {\binom{n}{1}} a^{n-1} b^{1} + {\binom{n}{2}} a^{n-2} b^{2} + \cdots + {\binom{n}{k}} a^{n-k} b^{k} + \cdots$		tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	±∞	0
$+ \binom{n}{n-1} a^{1} b^{n-1} + \binom{n}{n} a^{0} b^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} , n \in \mathbb{N}$		ctg	±∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	±∞	0	±∞

COMPLEX NUMBERS

z = x + yi, $x, y \in \mathbf{R}$, $|z| = \sqrt{x^2 + y^2}$ is the *absolute* value (or modulus or magnitude) of a complex number z = x + yi

<u>CONJUGATE</u>			TRIGONOMETRIC FORM			<u>OPERATIONS</u>		
z = x + yi	POWERS OF 7	THE IMAGINAR UNIT	z = x	$+yi = r(\cos\varphi + i\sin\varphi)$	$\sum_{y=x+iy}^{Im} z = x + iy$	$(a+b\cdot i)\pm(c+d\cdot i)$		
$\overline{z} = x - yi$ $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$	$i = \sqrt{-1}$ $i^2 = -1$	$i^{4k} = 1$ $i^{4k+1} = i$	r = z	$ = \sqrt{x^2 + y^2}$	r	$= (a \pm c) + (b \pm a) \cdot i$ $(a + b \cdot i) (c + d \cdot i)$		
$\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$	$i^3 = -i$	$i^{4k+2} = -1$	Arg z	$= \phi$	$\begin{array}{c c} \varphi \\ \hline 0 \\ \varphi \\ \hline x \\ \hline \end{array} \qquad \qquad$	= (ac - bd) (ad + bc) i		
$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$	<i>i</i> ⁴ = 1	$i^{4k+3} = -i \ k \in N_0$	tgφ =	$\frac{y}{x}$, $\phi \in [0, 2\pi)$	$-y$ $\overline{z}=x-iy$	$\frac{a+bi}{c+di} = \frac{ac+bd+(bc-ad)i}{c^2+d^2}$		
$z_1 \cdot z_2 = r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right) \qquad z^n = r^n \left(\cos(n\varphi) + i \sin(n\varphi) \right)$								
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \Big(\cos(\varphi) \Big)$	$(1 - \phi_2) + i \sin^2 \theta_2$	$n(\phi_1 - \phi_2))$		$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right), k = 0, 1, \dots, n-1.$				