BASIC MATH FORMULAS

SETS

Universal Set (U) is the set of all elements under consideration in the context we are studying.
RELATIONS
Subset: A set A is a subset of a set B, if and only if every element of the set A is contained in the set B. It is denoted by $A \subset B \Leftrightarrow(\forall x):(x \in A \Rightarrow x \in B)$.
Set Equality: A set A is equal to a set B, if and only if every element from A is also in B, and every element in B is also in A . It is denoted by $A=B \Leftrightarrow$ $(\forall x):(x \in A \Leftrightarrow x \in B)$.
Set Inequality: Two sets A and B are unequal if there is an element in A that is not in B or reverse.
Disjoint sets: Two sets A and B are disjoint if they do not have any shared elements; i.e., their intersection is the empty set.
OPERATIONS
Intersection of sets A and B are common elements to both. It is denoted by $A \cap B=\{x \in \mathrm{U} \mid x \in A i x \in B\}$.
Union of two sets A and B is the set of elements which are in A or in B or in both. It is denoted by $A \cup B=$ $\{x \in U \mid x \in A$ ili $x \in B\}$.
Difference of sets A and B, denoted $A \backslash B$, is the set consists of elements that are in A but not in B.
$A \backslash B=A \cap B^{c}=\{x \in \mathrm{U} \mid x \in A$ i $x \notin \mathrm{~B}\}$.
Symmetric difference of sets A i B is the set of elements which are in either of the sets but not in both. It is denoted by
$A \Delta B=A \backslash B \cup B \backslash A=\{x \in \mathrm{U} \mid x \in A \backslash B$ ili $x \in B \backslash A\}$.
Complement of a set A contains the elements present in universal set but not in A: $A^{c}=\{x \in U \mid x \notin \mathrm{~A}\}$.
PROPERTIES
commutability: $A \cap B=B \cap A, \quad A \cup B=B \cup A$
associativity: $(A \cup B) \cup C=A \cup(B \cup C)$,

$$
(A \cap B) C=A \cap(B \cap C)
$$

idempotency: $A \cup A=A, \quad A \cap A=A$
distributivity: $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$,

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

involution: $\left(A^{c}\right)^{c}=A$
De Morgan: $(A \cup B)^{c}=A^{c} \cap B^{c},(A \cap B)^{c}=A^{c} \cup B^{c}$

ALGEBARIC EXPRESSIONS

$$
\begin{aligned}
& (a \pm \mathrm{b})^{2}=a^{2} \pm 2 a b+b^{2} \\
& (a \pm \mathrm{b})^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2}+b^{3} \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{3} \pm \mathrm{b}^{3}=(\mathrm{a} \pm \mathrm{b})\left(\mathrm{a}^{2} \mp \mathrm{ab}+\mathrm{b}^{2}\right) \\
& a^{4}-\mathrm{b}^{4}=(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \\
& (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c
\end{aligned}
$$

EXPONENT RULES

$a^{0}=1, a \neq 0$
$a^{m} a^{n}=a^{m+n}$
$a^{m}: a^{n}=a^{m-n}, a \neq 0$
$(a b)^{n}=a^{n} b^{n}$
$\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{-n}=\frac{1}{a^{n}}, a \neq 0$

ROOTS

$$
\begin{aligned}
& a^{n}=b \leftrightarrow a=\sqrt[n]{b} \\
& \sqrt[n]{a b}=\sqrt[n]{a} \sqrt[n]{b} \\
& \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[a]{b}} \\
& \sqrt[n]{a^{m}}=\sqrt[n p]{a^{m p}} \\
& \sqrt[n]{\sqrt[m]{a}}=\sqrt[n m]{a}=a^{\frac{1}{n m}} \\
& \sqrt[m]{a^{n}}=a^{\frac{n}{m}}
\end{aligned}
$$

QUADRATIC EQUATION

$$
\begin{gathered}
a x^{2}+b x+c=0, \quad a \neq 0 \\
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
a x^{2}+b x+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{gathered}
$$

FACTORIALS AND BINOMIAL FORMULA

$$
\begin{aligned}
& n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot(n-2) \cdot(n-1) \cdot n, n \in N ; 0!=1 \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1)(n-2) \ldots(n-(k-1))}{k!}, k \leq n, n, k \in N_{0} \\
& \binom{n}{0}=1,\binom{n}{n}=1,\binom{n}{1}=\binom{n}{n-1}=n,\binom{n}{k}=\binom{n}{n-k} \\
& (\boldsymbol{a}+\boldsymbol{b})^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\cdots\binom{n}{k} a^{n-k} b^{k}+\cdots \\
& \quad+\binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n}=\sum_{k=0}^{n}\binom{\boldsymbol{n}}{\boldsymbol{k}} \boldsymbol{a}^{\boldsymbol{k}} \boldsymbol{b}^{n-\boldsymbol{k}}, n \in N
\end{aligned}
$$

TRIGONOMETRY TABLE

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\boldsymbol{\operatorname { s i n }}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\boldsymbol{\operatorname { c o s }}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\boldsymbol{\operatorname { t g }}$	0	$\frac{\sqrt{3}}{3}$	1	$\frac{\sqrt{3}}{\circ}$	$\pm \infty$	0	$\pm \infty$	0
$\boldsymbol{\operatorname { c t g }}$	$\pm \infty$	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$\pm \infty$	0	$\pm \infty$

COMPLEX NUMBERS

$z=x+y i, x, y \in \boldsymbol{R}, \quad|z|=\sqrt{x^{2}+y^{2}}$ is the absolute value (or modulus or magnitude) of a complex number $z=x+y i$

CONJUGATE
$z=x+y i$
$\bar{z}=x-y i$
$\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
$\overline{z_{1} \cdot{ }_{z}}=\overline{z_{1}} \cdot \overline{z_{2}}$
$\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\overline{z_{1}}}{\overline{z_{2}}}$

POWERS OF THE IMAGINAR UNIT

$i=\sqrt{-1}$	$i^{4 k}=1$
$i^{2}=-1$	$i^{4 k+1}=i$
$i^{3}=-i$	$i^{4 k+2}=-1$
$i^{4}=1$	$i^{4 k+3}=-i \quad k \in N_{0}$

TRIGONOMETRIC FORM

$$
\begin{aligned}
& z=x+y i=r(\cos \varphi+i \sin \varphi) \\
& r=|z|=\sqrt{x^{2}+y^{2}} \\
& \operatorname{Arg} z=\varphi \\
& \operatorname{tg} \varphi=\frac{\mathrm{y}}{\mathrm{x}}, \varphi \in[0,2 \pi>
\end{aligned}
$$

OPERATIONS

$$
\begin{aligned}
& (a+b \cdot i) \pm(c+d \cdot i) \\
& \quad=(a \pm c)+(b \pm d) \cdot i \\
& \begin{array}{r}
(a+b \cdot i)(c+d \cdot i) \\
\quad
\end{array}+(a c-b d)(a d+b c) i \\
& \frac{a+b i}{c+d i}=\frac{a c+b d+(b c-a d) i}{c^{2}+d^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& z_{1} \cdot z_{2}=r_{1} r_{2}\left(\cos \left(\varphi_{1}+\varphi_{2}\right)+\mathrm{i} \sin \left(\varphi_{1}+\varphi_{2}\right)\right) \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\varphi_{1}-\varphi_{2}\right)+\mathrm{i} \sin \left(\varphi_{1}-\varphi_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& z^{n}=r^{n}(\cos (\mathrm{n} \varphi)+\mathrm{i} \sin (\mathrm{n} \varphi)) \\
& \sqrt[n]{z}=\sqrt[n]{r}\left(\cos \frac{\varphi+2 \mathrm{k} \pi}{n}+i \sin \frac{\varphi+2 \mathrm{k} \pi}{n}\right), k=0,1, \ldots, n-1
\end{aligned}
$$

