From equation 2: $\quad x_{22}=-1-3 x_{11}-11 x_{12}$.

By including in the third and fourth equations, the result is:

$$
\begin{aligned}
& -3 x_{11}+3\left(-4-5 x_{11}-5 x_{12}\right)+5\left(-1-3 x_{11}-11 x_{12}\right)=16 \\
& -3 x_{12}+3\left(-4-5 x_{11}-5 x_{12}\right)+9\left(-1-3 x_{11}-11 x_{12}\right)=21 \\
& \left.\begin{array}{r}
-33 x_{11}-70 x_{12}=33 \\
-42 x_{11}-117 x_{12}=42
\end{array}\right\} \Rightarrow x_{11}=-1, x_{12}=0 \\
& \begin{array}{l}
x_{21}=-4-5 x_{11}-5 x_{12}=-4-5 \cdot(-1)-5 \cdot 0=1 \\
x_{22}=-1-3 x_{11}-11 x_{12}=-1-3 \cdot(-1)-11 \cdot 0=2 .
\end{array}
\end{aligned}
$$

Therefore, the matrix $X=\left[\begin{array}{cc}-1 & 0 \\ 1 & 2\end{array}\right]$ is the (only) solution of this equation.
Similar to the equation in Example 3 , equations of the form $A X=B$ and $Y A=B$ with unknowns X and Y, in which the matrix A is neither regular nor square, are solved.

2.10. MATRIX RANK

A single-column real matrix is also called a column vector (or shorter, a vector).
A single-row real matrix is also called a row vector.
Example 2.30

$$
C=\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]
$$

is a vector of dimension 3 because it has 3 components: 1,4 and 7 .

Vector C is a zero vector if all its components are equal to zero.
Analogously, a zero-row vector is defined.
The zero row (column) vector is marked by 0 .
A non-zero row (column) vector is a row (column) vector for which at least one component is different than zero.

Example 2.31

Matrix $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ can be written in the form

$$
A=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right],
$$

where $C_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$ and $C_{2}=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ are column vectors,
or in the form

$$
A=\left[\begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right],
$$

where $R_{1}=\left[\begin{array}{ll}1 & 2\end{array}\right], R_{2}=\left[\begin{array}{ll}3 & 4\end{array}\right]$ and $R_{3}=\left[\begin{array}{ll}5 & 6\end{array}\right]$ are row vectors.

A linear combination of vectors $C_{1}, C_{2}, \ldots, C_{n}$ of the same dimensions is any vector C defined by the formula

$$
C=\alpha_{1} C_{1}+\alpha_{2} C_{2}+\cdots+\alpha_{n} C_{n},
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are real numbers.
Analogously, a linear combination of row vectors is defined.
Notice that from $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$ follows $C=0$.

The opposite does not need to be valid, i.e., if $C=O$, then it does not necessarily have to be

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0 .
$$

It is said that a set of vectors $C_{1}, C_{2}, \ldots, C_{n}$ of the same dimensions is linearly independent, i.e., that the vectors $C_{1}, C_{2}, \ldots, C_{n}$ are linearly independent, if from $C=O$ necessarily follows that

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0 .
$$

It is said that a set of vectors $C_{1}, C_{2}, \ldots, C_{n}$ of the same dimensions is linearly dependent if it is not linearly independent, i.e., if from $C=O$ does not necessarily follows that

$$
\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0,
$$

i.e., that at least one of the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ can be different than zero.

If $C=O$ and for example $\alpha_{1} \neq 0$, the result is

$$
\alpha_{1} C_{1}+\alpha_{2} C_{2}+\cdots+\alpha_{n} C_{n}=O \Leftrightarrow \alpha_{1} C_{1}=-\alpha_{2} C_{2}-\cdots-\alpha_{n} C_{n} \Leftrightarrow C_{1}=\beta_{2} C_{2}+\cdots+\beta_{n} C_{n},
$$

where $\beta_{2}=-\frac{\alpha_{2}}{\alpha_{1}}, \ldots, \beta_{n}=-\frac{\alpha_{n}}{\alpha_{1}}$ are well defined numbers because $\alpha_{1} \neq 0$.

Vector C_{1} is written in the form of a linear combination of vectors C_{2}, \ldots, C_{n}.

It can be concluded that a set of vectors $C_{1}, C_{2}, \ldots, C_{n}$ of the same dimensions is linearly dependent if and only if at least one of these vectors can be represented as a linear combination of the remaining vectors of that set.

Theorem:

In each real matrix, the maximum number of linearly independent column vectors is equal to the maximum number of linearly independent row vectors. This number is called the rank of the matrix \boldsymbol{A} and is marked by $\boldsymbol{r}(\boldsymbol{A})$.

The rank of the real matrix does not change if elementary transformations are performed on the matrix.

We say that two real matrices of the same dimensions, A and B, are equivalent if one can be transformed from the other by applying finally many elementary transformations.

In such case we write $A \sim B$.
It means that equivalent matrices have the same rank.
The rank of the real matrix A is determined using the Gauss method - by elementary transformations the matrix A is transformed into an equivalent matrix B in which all elements below the diagonal determined by the elements a b_{11}, b_{22}, \ldots are equal to zero.

Note that, by applying this procedure, real square matrices are transformed into upper triangular matrices.

In applying this procedure, the following should be taken into account:

1) If one component of a non-zero row vector is equal to zero, and the same component of another non-zero row vector is different from zero, then those two row vectors are linearly independent. The same is also true for vector columns.
2) Each null row vector reduces the rank of the matrix by 1 which is obvious because every set of row-vectors containing a null row vector is linearly dependent. The same is true for column vectors.

Example 2.32

Determine the rank of the matrix $A=\left[\begin{array}{cccc}0 & 1 & 2 & 7 \\ -1 & 0 & 3 & 2 \\ 2 & 3 & 0 & 17\end{array}\right]$.
Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
0 & 1 & 2 & 7 \\
-1 & 0 & 3 & 2 \\
2 & 3 & 0 & 17
\end{array}\right]{ }^{R_{2}} R_{1} \sim\left[\begin{array}{cccc}
-1 & 0 & 3 & 2 \\
0 & 1 & 2 & 7 \\
2 & 3 & 0 & 17
\end{array}\right]_{R_{3}+2 R_{1}} \sim\left[\begin{array}{cccc}
-1 & 0 & 3 & 2 \\
0 & 1 & 2 & 7 \\
0 & 3 & 6 & 21
\end{array}\right]_{R_{3}-3 R_{2}} \\
& \sim\left[\begin{array}{cccc}
-1 & 0 & 3 & 2 \\
0 & 1 & 2 & 7 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow r(A)=2
\end{aligned}
$$

Some remarks about the solution:
We can write matrix A in the form $A=\left[\begin{array}{l}R_{1} \\ R_{2} \\ R_{3}\end{array}\right]$, where $R_{1}=\left[\begin{array}{llll}0 & 1 & 2 & 7\end{array}\right]$,
$R_{2}=\left[\begin{array}{llll}-1 & 0 & 3 & 2\end{array}\right], R_{3}=\left[\begin{array}{llll}2 & 3 & 0 & 17\end{array}\right]$ are row vectors of dimension 4.
It is not difficult to notice that each of the sets $\left\{R_{1}, R_{2}\right\},\left\{R_{1}, R_{3}\right\},\left\{R_{2}, R_{3}\right\}$ is linearly independent. For example, R_{1} and R_{2} are linearly independent because the first component of R_{1} is the number 0 , while the first component of R_{2} is the number -1 .

Let us check this using the definition of linear independence. It should be proven that from

$$
\alpha_{1} R_{1}+\alpha_{2} R_{2}=O
$$

necessarily follows that $\alpha_{1}=\alpha_{2}=0$.

$$
\begin{gathered}
\alpha_{1} R_{1}+\alpha_{2} R_{2}=0 \\
\alpha_{1}\left[\begin{array}{llll}
0 & 1 & 2 & 7
\end{array}\right]+\alpha_{2}[-1 \\
-1
\end{gathered} 0
$$

The result is that $r(A)=2$, so it can be concluded that the set $\left\{R_{1}, R_{2}, R_{3}\right\}$ is linearly dependent (because otherwise the rank of the matrix would be 3 , not 2). Let us check that too!

According to the definition, it should be proven that from

$$
\beta_{1} R_{1}+\beta_{2} R_{2}+\beta_{3} R_{3}=0
$$

does not necessarily follow that $\beta_{1}=\beta_{2}=\beta_{3}=0$.

$$
\beta_{1} R_{1}+\beta_{2} R_{2}+\beta_{3} R_{3}=0
$$

$$
\left.\left.\begin{array}{c}
\beta_{1}\left[\begin{array}{llll}
0 & 1 & 2 & 7
\end{array}\right]+\beta_{2}\left[\begin{array}{llll}
-1 & 0 & 3 & 2
\end{array}\right]+\beta_{3}\left[\begin{array}{lll}
2 & 3 & 0
\end{array}\right] 17
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]\right]\left[\begin{array}{lll}
-\beta_{2}+2 \beta_{3} & \beta_{1}+3 \beta_{3} & 2 \beta_{1}+3 \beta_{2}
\end{array} 7 \beta_{1}+2 \beta_{2}+17 \beta_{3}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array} 00\right]\left[\begin{array} { r }
{ - \beta _ { 2 } + 2 \beta _ { 3 } = 0 } \\
{ \beta _ { 1 } + 3 \beta _ { 3 } = 0 } \\
{ 2 \beta _ { 1 } + 3 \beta _ { 2 } } \\
{ 7 \beta _ { 1 } + 2 \beta _ { 2 } + 1 7 \beta _ { 3 } = 0 }
\end{array} ~ \Leftrightarrow \left\{\begin{array}{l}
\beta_{1}=-3 \beta_{3} \\
\beta_{2}=2 \beta_{3} \\
\beta_{3} \text { is any real number }
\end{array}\right.\right.
$$

It can be seen that for $\beta_{3}=0$ we have $\beta_{1}=\beta_{2}=\beta_{3}=0$. However, this is not the only possibility.
Thus, e.g., $\quad \beta_{3}=1 \Rightarrow \beta_{1}=-3, \beta_{2}=2$.
Therefore:

$$
-3 R_{1}+2 R_{2}+R_{3}=0 \Leftrightarrow R_{3}=3 R_{1}-2 R_{2} .
$$

It is proven that a row vector R_{3} can be written in a form of a linear combination of row vectors R_{1} and R_{2}.

Exercise (for better understanding of the topic)

Show that for any three real numbers k_{1}, k_{2} and k_{3} different from zero and any $a, b, c \in \mathbb{R}$ the upper triangular matrix $A=\left[\begin{array}{ccc}k_{1} & a & b \\ 0 & k_{2} & c \\ 0 & 0 & k_{3}\end{array}\right]$ has a rank 3 .

Solution:

$$
\begin{gathered}
R_{1}=\left[\begin{array}{lll}
k_{1} & a & b
\end{array}\right], R_{2}=\left[\begin{array}{lll}
0 & k_{2} & c
\end{array}\right], R_{3}=\left[\begin{array}{lll}
0 & 0 & k_{3}
\end{array}\right] \\
\alpha_{1} R_{1}+\alpha_{2} R_{2}+\alpha_{3} R_{3}=0 \\
\alpha_{1}\left[\begin{array}{lll}
k_{1} & a & b
\end{array}\right]+\alpha_{2}\left[\begin{array}{lll}
0 & k_{2} & c
\end{array}\right]+\alpha_{3}\left[\begin{array}{lll}
0 & 0 & k_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
{\left[\begin{array}{lll}
k_{1} \alpha_{1} & a \alpha_{1}+k_{2} \alpha_{2} & b \alpha_{1}+c \alpha_{2}+k_{3} \alpha_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \Leftrightarrow \begin{cases}k_{1} \alpha_{1} & =0 \\
a \alpha_{1}+k_{2} \alpha_{2} & =0 \\
b \alpha_{1}+ & c \alpha_{2}+k_{3} \alpha_{3}=0\end{cases} } \\
\Leftrightarrow \alpha_{1}=\alpha_{2}=\alpha_{3}=0
\end{gathered}
$$

This is the so-called lower-triangular system which is simply solved by determining, from the first equation, α_{1}, then from the second α_{2}, and finally from the third equation α_{3}

A more detailed description of the Gauss method

The rank of the $m \times n$ real matrix A needs to be determined.
If $a_{11}=0$, then using elementary transformations, the matrix A is transformed into the matrix A_{1} in which $a_{11} \neq 0$. If such matrix A_{1} does not exist, then the matrix A is a null-matrix with the rank $r(A)=0$. Otherwise, i.e., if such a matrix A_{1} exists, using elementary transformations, the matrix A_{1} is transformed into the matrix A_{1}^{\prime} in which $a_{21}=a_{31}=\cdots=a_{m 1}=0$. Then, using elementary transformations (but not on the 1 st row nor on the 1 st column of the matrix A_{1}^{\prime}), the matrix A_{1}^{\prime} is transformed into the matrix A_{2} in which $a_{22} \neq 0$. If such a matrix A_{2} does not exist, then $r(A)=$ $r\left(A_{1}^{\prime}\right)=1$. Otherwise, using elementary transformations (but not on the 1 st row nor on the 1 st column of the matrix A_{2}) the matrix A_{2} is transformed into the matrix A_{2}^{\prime} in which $a_{32}=a_{42}=$ $\cdots=a_{m 2}=0$. Then, using elementary transformations (but not on the first two rows nor on the first two columns of the matrix A_{2}^{\prime}), the matrix A_{2}^{\prime} is transformed into the matrix A_{3} in which $a_{33} \neq$ 0 . If such a matrix A_{3} does not exist, then $r(A)=r\left(A_{2}^{\prime}\right)=2$. Otherwise, using elementary transformations (but not on the first two rows nor on the first two columns of the matrix A_{3}), the matrix A_{3} is transformed into the matrix A_{3}^{\prime} in which $a_{43}=a_{53}=\cdots=a_{m 3}=0$. Then, using elementary transformations (but not on the first three rows nor on the first three columns of the matrix A_{3}^{\prime}), the matrix A_{3}^{\prime} is transformed into the matrix A_{4} in which $a_{44} \neq 0$. If such a matrix A_{4} does not exist, then $r(A)=r\left(A_{3}^{\prime}\right)=3$. Etc.

Sometimes it is convenient to put 1 s on the diagonal, which can always be easily achieved, although it is sometimes difficult to avoid calculating with fractions. So, with the usage of elementary transformations, 1 is put on the position a_{11}. The new elements of the new matrix are marked in the same way as the elements of the matrix A. Then the 1 st row is multiplied by $-a_{21},-a_{31}, \ldots,-a_{m 1}$ and is added to the 2 nd row, the 3 rd row, ..., the m th row. In this way, a new matrix is created (with the same element labels as in the matrix A) in which all the elements in the 1st column below the element a_{11} are equal to zero. After that, neither the 1st row nor the 1 st column are going to be changed in elementary transformations. Then, 1 is put on the position a_{22}. The new elements of the new matrix are marked in the same way as the elements of the matrix A. Then the 2 nd row is multiplied by $-a_{32},-a_{42}, \ldots,-a_{m 2}$ and is added to the 3 rd row, the 4 th row, ..., the m th row. In this way, a new matrix is created (with the same element labels as in the matrix A) in which all the elements in the 1 st column below the element a_{11} and all the elements in the 2 nd column below the element a_{22} are equal to zero. After that, neither the first two rows nor the first two columns are going to be changed in elementary transformations. Etc.

At the end of the procedure, if A is not a null-matrix (each null-matrix has a rank 0), we get:
a) the matrix $B=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right]$, where B_{1} is the upper triangular matrix that has no zeros on the main diagonal, and B_{2} is a null-matrix, so $r(A)=r(B)=r\left(B_{1}\right)=$ order of B_{1},

Erasmus+ Programme of the European Union
or
b) the matrix $B=\left[\frac{B_{1}}{B_{2}}\right]$, where B_{1} is the upper triangular matrix that has no zeros on the main diagonal, and B_{2} is a null-matrix, so $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=n$ (which is possible only when $m>n$),
or
c) the matrix $B=\left[B_{1} \mid B_{3}\right]$, where B_{1} is the upper triangular matrix that has no zeros on the main diagonal, then $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=m$ (which is possible only when $m<n$),
or
d) the upper triangular matrix B that has no zeros on the main diagonal, so
$r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=m=n$ (which is possible only when $m=n$).
Notice that in any case $0 \leq r(A) \leq \min \{m, n\}$.
Thus, the rank of the matrix A, which is equivalent to the matrix B, in one of the previous 4 cases is easily determined.

In the Example 3.3, the following result is obtained
$A \sim\left[\begin{array}{cccc}-1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right]$, where $B_{1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], B_{2}=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right], B_{3}=\left[\begin{array}{ll}3 & 2 \\ 2 & 7\end{array}\right]$.
Therefore, $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=2$. (case a)).
Thus, $A_{1}=\left[\begin{array}{cccc}-1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 7 \\ 2 & 3 & 0 & 17\end{array}\right], A_{1}^{\prime}=A_{2}=\left[\begin{array}{cccc}-1 & 0 & 3 & 2 \\ 0 & 1 & 2 & 7 \\ 0 & 3 & 6 & 21\end{array}\right]$.

Example 2.33

Determine the rank of the matrix $A=\left[\begin{array}{ccc}9 & 20 & 6 \\ 10 & 9 & -5 \\ 8 & 31 & 17\end{array}\right]$.

Solution:

$$
\begin{aligned}
A=\left[\begin{array}{ccc}
9 & 20 & 6 \\
10 & 9 & -5 \\
8 & 31 & 17
\end{array}\right]^{R_{1}-R_{3}} \sim & \sim\left[\begin{array}{ccc}
1 & -11 & -11 \\
10 & 9 & -5 \\
8 & 31 & 17
\end{array}\right] R_{2}-10 R_{1} \sim\left[\begin{array}{ccc}
1 & -11 & -11 \\
R_{3}-8 R_{1} & 119 & 105 \\
0 & 119 & 105
\end{array}\right] R_{3}-R_{2} \\
& \sim \underbrace{\left[\begin{array}{ccc}
1 & -11 & -11 \\
0 & 119 & 105 \\
0 & 0 & 0
\end{array}\right]}_{=B}=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right],
\end{aligned}
$$

where $B_{1}=\left[\begin{array}{cc}1 & -11 \\ 0 & 119\end{array}\right], B_{2}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right], B_{3}=\left[\begin{array}{c}-11 \\ 105\end{array}\right]$.
Then $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=2$.

Example 2.34

Determine the rank of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & m & 1 \\ 1 & m^{2} & m^{2}\end{array}\right]$ depending on the real parameter m.

Solution:

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & m & 1 \\
1 & m^{2} & m^{2}
\end{array}\right] \begin{array}{c}
\text { R }
\end{array}_{R_{2}-R_{1} \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
R_{3}-R_{1} & m-1 & 0 \\
0 & m^{2}-1 & m^{2}-1
\end{array}\right] ;}^{m=1 \Rightarrow A \sim \underbrace{\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}_{=B}=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right]} .
\end{gathered}
$$

where $B_{1}=[1], B_{2}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], B_{3}=\left[\begin{array}{ll}1 & 1\end{array}\right]$.
Thus, $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=1$.

$$
\begin{gathered}
m \neq 1 \Rightarrow A \sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & m-1 & 0 \\
0 & (m-1)(m+1) & (m-1)(m+1)
\end{array}\right] \begin{array}{c}
\left(m R_{2} /(m-1)\right. \\
R_{3} /(m-1)
\end{array} \\
\sim\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & m+1 & m+1
\end{array}\right]_{R_{3}-(m+1) R_{2}}^{\sim}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & m+1
\end{array}\right] ; \\
m=-1 \Rightarrow A \sim \underbrace{\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]}_{=B}=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right],
\end{gathered}
$$

where $B_{1}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], B_{2}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right], B_{3}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$;
then $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=2$.
$m \notin\{-1,1\} \Rightarrow A \sim\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & m+1\end{array}\right]_{R_{3} /(m+1)} \sim\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \Rightarrow r(A)=r(B)=3$ (case d)).
Therefore,

$$
\begin{aligned}
& m=1 \Rightarrow r(A)=1, \\
& m=-1 \Rightarrow r(A)=2, \\
& m \notin\{-1,1\} \Rightarrow r(A)=3 .
\end{aligned}
$$

Example 2.35
For what value of the real parameter t is the rank of the matrix $A=\left[\begin{array}{llll}t & 1 & 1 & 1 \\ 1 & t & 1 & 1 \\ 1 & 1 & t & 1 \\ 1 & 1 & 1 & t\end{array}\right]$ equal to 3?

Solution:

$$
A=\left[\begin{array}{llll}
t & 1 & 1 & 1 \\
1 & t & 1 & 1 \\
1 & 1 & t & 1 \\
1 & 1 & 1 & t
\end{array}\right] R_{2} R_{1} \sim\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
t & 1 & 1 & 1 \\
1 & 1 & t & 1 \\
1 & 1 & 1 & t
\end{array}\right] \begin{aligned}
& R_{2}-t R_{1} \sim \\
& R_{3}-R_{1} \\
& R_{4}-R_{1}
\end{aligned}\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
0 & 1-t^{2} & 1-t & 1-t \\
0 & 1-t & t-1 & 0 \\
0 & 1-t & 0 & t-1
\end{array}\right] ;
$$

case 1: $\quad t=1$

$$
A \sim \underbrace{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}_{=B}=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right],
$$

where $B_{1}=[1], B_{2}=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], B_{3}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$;
then $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=1$.
case 2: $\quad t \neq 1$

$$
\begin{aligned}
& A \sim\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
0 & (1-t)(1+t) & 1-t & 1-t \\
0 & 1-t & -(1-t) & 0 \\
0 & 1-t & 0 & -(1-t)
\end{array}\right] \begin{array}{l}
R_{2} /(1-t) \\
R_{3} /(1-t) \\
R_{4} /(1-t)
\end{array}\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
0 & 1+t & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] \begin{array}{l}
R_{3} \\
R_{2}
\end{array} \\
& \left.\left.\sim\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1+t & 1 & 1 \\
0 & 1 & 0 & -1
\end{array}\right] \underset{R_{3}-(1+t) R_{2}}{R_{4}-R_{2}} \sim \underset{c c c c}{1} \begin{array}{ccc}
t & 1 & 1 \\
0 & 1 & -1 \\
0 \\
0 & 0 & 2+t \\
0 & 0 & 1 \\
1
\end{array}\right] \begin{array}{c}
-1
\end{array}\right] R_{R_{3}} \\
& \sim\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 2+t & 1
\end{array}\right]_{R_{4}-(2+t) R_{3}} \sim\left[\begin{array}{cccc}
1 & t & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 3+t
\end{array}\right] ; \\
& t=-3 \Rightarrow A \sim\left[\begin{array}{cccc}
1 & -3 & 1 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow r(A)=3 . \\
& \text { Thus, for } t=-3 \\
& r(A)=3 .
\end{aligned}
$$

Example 2.36
Determine the rank of the matrix $A=\left[\begin{array}{cccccc}1 & -2 & 3 & -1 & -1 & -2 \\ 2 & -1 & 1 & 0 & -2 & -2 \\ -2 & -5 & 8 & -4 & 3 & -1 \\ 6 & 0 & -1 & 2 & -7 & -5 \\ -1 & -1 & 1 & -1 & 2 & 1\end{array}\right]$

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
1 & -2 & 3 & -1 & -1 & -2 \\
2 & -1 & 1 & 0 & -2 & -2 \\
-2 & -5 & 8 & -4 & 3 & -1 \\
6 & 0 & -1 & 2 & -7 & -5 \\
-1 & -1 & 1 & -1 & 2 & 1
\end{array}\right] \begin{array}{l}
R_{2}-2 R_{1} \\
R_{3}+2 R_{1} \sim \\
R_{4}-6 R_{1} \\
R_{5}+R_{1}
\end{array} \quad\left[\begin{array}{cccccc}
1 & -2 & 3 & -1 & -1 & -2 \\
0 & 3 & -5 & 2 & 0 & 2 \\
0 & -9 & 14 & -6 & 1 & -5 \\
0 & 12 & -19 & 8 & -1 & 7 \\
0 & -3 & 4 & -2 & 1 & -1
\end{array}\right] \begin{array}{l}
R_{3}+3 R_{2} \\
R_{4}-4 R_{2} \\
R_{5}+R_{2}
\end{array} \\
& \sim\left[\begin{array}{cccccc}
1 & -2 & 3 & -1 & -1 & -2 \\
0 & 3 & -5 & 2 & 0 & 2 \\
0 & 0 & -1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & -1 & 0 & 1 & 1
\end{array}\right] R_{R_{5}-R_{3}}^{R_{4}+R_{3}} \sim \underbrace{\left[\begin{array}{cccccc}
1 & -2 & 3 & -1 & -1 & -2 \\
0 & 3 & -5 & 2 & 0 & 2 \\
0 & 0 & -1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}_{=B}=\left[\frac{B_{1} \mid B_{3}}{B_{2}}\right], \\
& \text { where } B_{1}=\left[\begin{array}{ccc}
1 & -2 & 3 \\
0 & 3 & -5 \\
0 & 0 & -1
\end{array}\right], B_{2}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], B_{3}=\left[\begin{array}{ccc}
-1 & -1 & -2 \\
2 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \text {; }
\end{aligned}
$$

then $r(A)=r(B)=r\left(B_{1}\right)=$ order of $B_{1}=3$.

