2.2. MATRIX ARITHMETIC

Matrix addition

Only matrices of the same dimensions can be added.
If A and B are $m \times n$ real matrices, then $C=A+B$ is also $m \times n$ real matrix. Element $c_{i j}$ of the matrix C is calculated using the following formula

$$
c_{i j}=a_{i j}+b_{i j} .
$$

Therefore, the elements in the same positions are added.

Example 2.9

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 3 & 7 \\
1 & 0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 3 & 4 \\
2 & -1 & 1
\end{array}\right] ; \\
C=A+B=\left[\begin{array}{ccc}
2+1 & 3+3 & 7+4 \\
1+2 & 0+(-1) & 1+1
\end{array}\right]=\left[\begin{array}{ccc}
3 & 6 & 11 \\
3 & -1 & 2
\end{array}\right] .
\end{gathered}
$$

Multiplying the matrix by a number

The real matrix is multiplied by a number so that each element of the matrix is multiplied by that number.

Example 2.10

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 3 & 7 \\
1 & 0 & 1
\end{array}\right], \lambda=\frac{1}{2} ; \\
D=\lambda A=\frac{1}{2}\left[\begin{array}{lll}
2 & 3 & 7 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{2} \cdot 2 & \frac{1}{2} \cdot 3 & \frac{1}{2} \cdot 7 \\
\frac{1}{2} \cdot 1 & \frac{1}{2} \cdot 0 & \frac{1}{2} \cdot 1
\end{array}\right]=\left[\begin{array}{lll}
1 & \frac{3}{2} & \frac{7}{2} \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]
\end{gathered}
$$

The following is also defined

$$
-A=(-1) \cdot A .
$$

Matrix subtraction

Only matrices of the same dimensions can be subtracted.
If A and B are real matrices of the same dimensions, then their difference, matrix E, is defined as follows:

$$
E=A-B=A+(-B)=A+(-1) \cdot B .
$$

$$
\begin{gathered}
A=\left[\begin{array}{lll}
2 & 3 & 7 \\
1 & 0 & 1
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 3 & 4 \\
2 & -1 & 1
\end{array}\right] ; \\
E=A-B=A+(-1) \cdot B=\left[\begin{array}{lll}
2 & 3 & 7 \\
1 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
-1 & -3 & -4 \\
-2 & 1 & -1
\end{array}\right] \\
=\left[\begin{array}{ccc}
2+(-1) & 3+(-3) & 7+(-4) \\
1+(-2) & 0+1 & 1+(-1)
\end{array}\right]=\left[\begin{array}{ccc}
2-1 & 3-3 & 7-4 \\
1-2 & 0-(-1) & 1-1
\end{array}\right] \\
=\left[\begin{array}{ccc}
1 & 0 & 3 \\
-1 & 1 & 0
\end{array}\right] .
\end{gathered}
$$

Example 2.12

The matrices A, B, C are defined as follows

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & -2
\end{array}\right], B=\left[\begin{array}{cc}
0.25 & 1 \\
0 & -0.5 \\
1 & 3
\end{array}\right] \text { and } C=\left[\begin{array}{cc}
-1 & 1 \\
-1 & -1 \\
1 & 1
\end{array}\right] .
$$

Calculate:
a) $A+B$
b) $A-C$
c) $A+B-C$
d) $12 B$
e) $2 A-C$
f) $2 A+0.5 C$
g) $2 A^{T}$
h) $A^{T}+3 C^{T}$.

Solution:

a) $\quad A+B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -2\end{array}\right]+\left[\begin{array}{cc}0.25 & 1 \\ 0 & -0.5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}0+0.25 & 1+1 \\ -1+0 & 0+(-0.5) \\ 1+1 & -2+3\end{array}\right]=\left[\begin{array}{cc}0.25 & 2 \\ -1 & -0.5 \\ 2 & 1\end{array}\right]$
b) $\quad A-C=\left[\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -2\end{array}\right]-\left[\begin{array}{cc}-1 & 1 \\ -1 & -1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}0-(-1) & 1-1 \\ -1-(-1) & 0-(-1) \\ 1-1 & -2-1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & -3\end{array}\right]$
c) $A+B-C=(A+B)-C=\left[\begin{array}{cc}0.25 & 2 \\ -1 & -0.5 \\ 2 & 1\end{array}\right]-\left[\begin{array}{cc}-1 & 1 \\ -1 & -1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1.25 & 1 \\ 0 & 0.5 \\ 1 & 0\end{array}\right]$
d) $\quad 12 B=12\left[\begin{array}{cc}0.25 & 1 \\ 0 & -0.5 \\ 1 & 3\end{array}\right]=\left[\begin{array}{cc}12 \cdot 0.25 & 12 \cdot 1 \\ 12 \cdot 0 & 12 \cdot(-0.5) \\ 12 \cdot 1 & 12 \cdot 3\end{array}\right]=\left[\begin{array}{cc}3 & 12 \\ 0 & -6 \\ 12 & 36\end{array}\right]$
e) $\quad 2 A-C=\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ 2 & -4\end{array}\right]-\left[\begin{array}{cc}-1 & 1 \\ -1 & -1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ -1 & 1 \\ 1 & -5\end{array}\right]$
f) $2 A+0.5 C=\left[\begin{array}{cc}0 & 2 \\ -2 & 0 \\ 2 & -4\end{array}\right]+\left[\begin{array}{cc}-0.5 & 0.5 \\ -0.5 & -0.5 \\ 0.5 & 0.5\end{array}\right]=\left[\begin{array}{cc}-0.5 & 2.5 \\ -2.5 & -0.5 \\ 2.5 & -3.5\end{array}\right]$
g) $\quad 2 A^{T}=2\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -2\end{array}\right]=\left[\begin{array}{ccc}0 & -2 & 2 \\ 2 & 0 & -4\end{array}\right]$
h) $\quad A^{T}+3 C^{T}=\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -2\end{array}\right]+3\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & -1 & 1\end{array}\right]=\left[\begin{array}{ccc}-3 & -4 & 4 \\ 4 & -3 & 1\end{array}\right]$.

Matrix multiplication

Product $F=A \cdot B$ of the real matrices A and B exists only if the number of rows of the matrix B is equal to the number of columns of the matrix A.

If A is $m \times n$ real matrix and B is $n \times k$ real matrix, then $F=A \cdot B$ is $m \times k$ real matrix and the following is valid

$$
f_{i j}=\sum_{l=1}^{n} a_{i l} b_{l j} .
$$

Example 2.13

$$
\begin{gathered}
A=\left[\begin{array}{cc}
5 & 2 \\
7 & -1 \\
1 & -5
\end{array}\right], B=\left[\begin{array}{cccc}
2 & 3 & 1 & 4 \\
2 & -2 & 4 & 0
\end{array}\right] ; \\
F=A \cdot B=\left[\begin{array}{llll}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
f_{31} & f_{32} & f_{33} & f_{34}
\end{array}\right]=\left[\begin{array}{cccc}
14 & 11 & 13 & 20 \\
12 & 23 & 3 & 28 \\
-8 & 13 & -19 & 4
\end{array}\right] . \\
f_{12}=\sum_{l=1}^{2} a_{1 l} b_{l 2}=a_{11} b_{12}+a_{12} b_{22}=5 \cdot 3+2 \cdot(-2)=11, \\
f_{23}=\sum_{l=1}^{2} a_{2 l} b_{l 3}=a_{21} b_{13}+a_{22} b_{23}=7 \cdot 1+(-1) \cdot 4=3, \\
f_{31}=\sum_{l=1}^{2} a_{3 l} b_{l 1}=a_{31} b_{11}+a_{32} b_{21}=1 \cdot 2+(-5) \cdot 2=-8,
\end{gathered}
$$

Example 2.14

$$
\begin{gathered}
{\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]=[3 \cdot 1+4 \cdot 2+5 \cdot(-3)]=[-4] ;} \\
\\
{\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] \cdot\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right]=\left[\begin{array}{ccc}
3 & 4 & 5 \\
6 & 8 & 10 \\
-9 & -12 & -15
\end{array}\right]}
\end{gathered}
$$

Example 2.15

Determine the matrix $F=A \cdot B$ if
a) $A=\left[\begin{array}{ll}3 & -2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1\end{array}\right]$
b) $\quad A=\left[\begin{array}{llll}-1 & 1 & 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 5 & 2 \\ -1 & 8 & 1\end{array}\right]$
c) $\quad A=\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 1 \\ 4 & 8 & 0\end{array}\right]$
d) $\quad A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -1 & 4 \\ 1 & 1 & 0 \\ 0 & 4 & 1\end{array}\right]$.

Solution:

a)

Matrix F is not defined (i.e., does not exist) because the number of rows of matrix B is not equal to the number of columns of matrix A. Namely, matrix B has 1 row, and matrix A has 2 columns.
b) $\quad F=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13}\end{array}\right]$, i.e., F is 1×3 matrix because A is 1×4 matrix and B is 4×3 matrix;

$$
\begin{aligned}
f_{11}=\sum_{l=1}^{4} a_{1 l} b_{l 1}= & a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}+a_{14} b_{41} \\
= & -1 \cdot(-1)+1 \cdot 2+2 \cdot 0+3 \cdot(-1)=0, \\
f_{12}=\sum_{l=1}^{4} a_{1 l} b_{l 2} & =a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}+a_{14} b_{42} \\
& =-1 \cdot 2+1 \cdot(-1)+2 \cdot 5+3 \cdot 8=31, \\
f_{13}=\sum_{l=1}^{4} a_{1 l} b_{l 3} & =a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33}+a_{14} b_{43} \\
& =-1 \cdot 0+1 \cdot 0+2 \cdot 2+3 \cdot 1=7 .
\end{aligned}
$$

Therefore, $F=\left[\begin{array}{lll}0 & 31 & 7\end{array}\right]$.
c) $\quad F=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23}\end{array}\right]$, i.e., F is 2×3 matrix because A is 2×3 matrix and B is 3×3 matrix.

$$
f_{11}=\sum_{l=1}^{3} a_{1 l} b_{l 1}=a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31}=1 \cdot 0+0 \cdot 1+1 \cdot 4=4
$$

$$
\begin{aligned}
& f_{12}=\sum_{l=1}^{3} a_{11} b_{l 2}=a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}=1 \cdot 1+0 \cdot 0+1 \cdot 8=9, \\
& f_{13}=\sum_{l=1}^{3} a_{11} b_{l 3}=a_{11} b_{13}+a_{12} b_{23}+a_{13} b_{33}=1 \cdot(-1)+0 \cdot 1+1 \cdot 0=-1, \\
& f_{21}=\sum_{l=1}^{3} a_{2 l} b_{l 1}=a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31}=-1 \cdot 0+1 \cdot 1+2 \cdot 4=9, \\
& f_{22}=\sum_{l=1}^{3} a_{2 l} b_{l 2}=a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}=-1 \cdot 1+1 \cdot 0+2 \cdot 8=15, \\
& f_{23}=\sum_{l=1}^{3} a_{2 l} b_{l 3}=a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33}=(-1) \cdot(-1)+1 \cdot 1+2 \cdot 0=2 .
\end{aligned}
$$

Therefore, $F=\left[\begin{array}{ccc}4 & 9 & -1 \\ 9 & 15 & 2\end{array}\right]$.
d) The required matrix is $F=\left[\begin{array}{lll}f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33}\end{array}\right]$. Namely, the matrices A and B are 3×3 matrices.

$$
\begin{aligned}
& f_{12}=\sum_{l=1}^{3} a_{1 l} b_{l 2}=a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32}=1 \cdot(-1)+0 \cdot 1+1 \cdot 4=3, \\
& f_{23}=\sum_{l=1}^{3} a_{2 l} b_{l 3}=a_{21} b_{13}+a_{22} b_{23}+a_{23} b_{33}=2 \cdot 4+(-2) \cdot 0+1 \cdot 1=9, \\
& f_{31}=\sum_{l=1}^{3} a_{3 l} b_{l 1}=a_{31} b_{11}+a_{32} b_{21}+a_{33} b_{31}=0 \cdot 1+0 \cdot 1+(-1) \cdot 0=0 .
\end{aligned}
$$

Similarly, the remaining elements of the matrix F are determined. The following is obtained

$$
F=\left[\begin{array}{ccc}
1 & 3 & 5 \\
0 & 0 & 9 \\
0 & -4 & -1
\end{array}\right] .
$$

The two most important properties of matrix multiplication
a) Matrix multiplication is associative, i.e., $(A \cdot B) \cdot C=A \cdot(B \cdot C)$ when all products are defined.
b) Multiplication of matrices is generally not commutative, i.e., if the products $A \cdot B$ and B. A of the matrices A and B exist, then $A \cdot B$ does not have to be (and most often is not) equal to $B \cdot A$.

It may even happen that one of these products exists and the other does not. In Example 2.5 there is no product of $B \cdot A$. In Example 2.6 both products exist and are obviously different because the matrices of different sizes have been obtained

2.3. MATRIX POLYNOMIAL

Let A be any real square matrix of order n and $P_{m}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m}$ a polynomial of degree m, where $x, a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{R}$. Then $P_{m}(A)$ is defined as follows:

$$
P_{m}(A)=a_{0} \cdot A^{0}+a_{1} \cdot A^{1}+a_{2} \cdot A^{2}+\cdots+a_{m} \cdot A^{m}
$$

where

$$
\begin{aligned}
& A^{0}=I_{n}, \\
& A^{1}=A, \\
& A^{2}=A \cdot A, \\
& A^{3}=A^{2} \cdot A=A \cdot A^{2}, \\
& \vdots \\
& A^{m}=A^{m-1} \cdot A \stackrel{\text { a) }}{=} A \cdot A^{m-1} .
\end{aligned}
$$

It can be noticed that $P_{m}(A)$ is also a real square matrix, and of the same order as the matrix A.

Example 2.16

If $A=\left[\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right]$ and $P_{3}(x)=3 x^{3}+2 x^{2}+2 x+3$, determine $P_{3}(A)$.

Solution:

$$
\begin{gathered}
P_{3}(A)=3 A^{3}+2 A^{2}+2 A+3 I_{2} \\
A^{2}=A \cdot A=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] \\
A^{3}=A^{2} \cdot A=\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
P_{3}(A)=3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+2\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right]+3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]+\left[\begin{array}{ll}
-2 & 2 \\
-2 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & -2 \\
2 & -2
\end{array}\right]+\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=4\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=4 I_{2}
\end{gathered}
$$

Example 2.17

A polynomial $P_{3}(x)=x^{3}-x^{2}-2 x$ and a matrix $A=\left[\begin{array}{ccc}1 & -1 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$ are given.
Prove the following: $\quad P_{3}(A)=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 1 & 1 \\ -1 & -1 & 1\end{array}\right]$.

