Solution:

$$
\begin{gathered}
P_{3}(A)=A^{3}-A^{2}-2 A \\
A^{2}=A \cdot A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & -3 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right] \\
A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
2 & -3 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & -6 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 1
\end{array}\right]
\end{gathered}
$$

$$
P_{3}(A)=\left[\begin{array}{ccc}
5 & -6 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 1
\end{array}\right]-\left[\begin{array}{ccc}
2 & -3 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right]-2\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right]
$$

2.4. DETERMINANT OF A SQUARE MATRIX

Let $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]$ be a real matrix of order n.

The determinant of a matrix A is a number which can be joined to that matrix and is marked by

$$
\operatorname{det} A \text { or }\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \text {. }
$$

If $\boldsymbol{A}=\left[\boldsymbol{a}_{11}\right]$, then $\operatorname{det} \boldsymbol{A}=\boldsymbol{a}_{11}$.
If $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then $\operatorname{det} A=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$.

2.5. DETERMINANT OF THE MATRIX OF ORDER $\boldsymbol{n} \geq 3$

The minor of the element $a_{i j}$ of the matrix A is determinant of the matrix that is formed from the matrix A by deleting its i th row and j th column. We denote that number by $M_{i j}$.

Example 2.18
For $A=\left[\begin{array}{cc}3 & 1 \\ 2 & -4\end{array}\right]$ is

$$
M_{11}=-4, M_{12}=2, M_{21}=1, M_{22}=3 .
$$

