Solution:

$$
\begin{gathered}
P_{3}(A)=A^{3}-A^{2}-2 A \\
A^{2}=A \cdot A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & -3 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right] \\
A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
2 & -3 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & -6 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 1
\end{array}\right]
\end{gathered}
$$

$$
P_{3}(A)=\left[\begin{array}{ccc}
5 & -6 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 1
\end{array}\right]-\left[\begin{array}{ccc}
2 & -3 & -1 \\
-2 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right]-2\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right]
$$

2.4. DETERMINANT OF A SQUARE MATRIX

Let $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]$ be a real matrix of order n.

The determinant of a matrix A is a number which can be joined to that matrix and is marked by

$$
\operatorname{det} A \text { or }\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \text {. }
$$

If $\boldsymbol{A}=\left[\boldsymbol{a}_{11}\right]$, then $\operatorname{det} \boldsymbol{A}=\boldsymbol{a}_{11}$.
If $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then $\operatorname{det} A=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$.

2.5. DETERMINANT OF THE MATRIX OF ORDER $\boldsymbol{n} \geq 3$

The minor of the element $a_{i j}$ of the matrix A is determinant of the matrix that is formed from the matrix A by deleting its i th row and j th column. We denote that number by $M_{i j}$.

Example 2.18
For $A=\left[\begin{array}{cc}3 & 1 \\ 2 & -4\end{array}\right]$ is

$$
M_{11}=-4, M_{12}=2, M_{21}=1, M_{22}=3 .
$$

Example 2.19

For $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 5 & 7 & 0 \\ 4 & 6 & 8\end{array}\right]$ is

$$
M_{11}=\left|\begin{array}{ll}
7 & 0 \\
6 & 8
\end{array}\right|=56, M_{12}=\left|\begin{array}{ll}
5 & 0 \\
4 & 8
\end{array}\right|=40, M_{13}=\left|\begin{array}{ll}
5 & 7 \\
4 & 6
\end{array}\right|=2, M_{21}=\left|\begin{array}{ll}
1 & 2 \\
6 & 8
\end{array}\right|=-4, \ldots
$$

The algebraic complement or cofactor of the element $\boldsymbol{a}_{\boldsymbol{i j}}$ of the matrix \boldsymbol{A} is marked $\boldsymbol{A}_{\boldsymbol{i j}}$. That is a number defined by the formula:

$$
A_{i j}=(-1)^{i+j} M_{i j}
$$

Example 2.20

$$
\begin{aligned}
\text { For } A= & {\left[\begin{array}{lll}
3 & 1 & 2 \\
5 & 7 & 0 \\
4 & 6 & 8
\end{array}\right] \text { is } } \\
& A_{11}=M_{11}=56, A_{12}=-M_{12}=-40, A_{13}=M_{13}=2, A_{21}=-M_{21}=4, \ldots
\end{aligned}
$$

2.6. LAPLACE EXPANSION FOR THE DETERMINANT

The following formulas are applied for a real matrix $\boldsymbol{A}=\left[\boldsymbol{a}_{\boldsymbol{i}}\right]$ of order $\boldsymbol{n} \geq \mathbf{2}$:
$\operatorname{det} A=\sum_{k=1}^{n} a_{i k} A_{i k}$ (Laplace expansion by the \boldsymbol{i} th row),
$\operatorname{det} A=\sum_{k=1}^{n} a_{k j} A_{k j}$ (Laplace expansion by the \boldsymbol{j} th column).

Example 2.21

Determine $\operatorname{det} A$ using Laplace expansion:
a) by the 1 st row
b) by the 2 nd column
if $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 5 & 7 & 0 \\ 4 & 6 & 8\end{array}\right]$.
Solution: $\quad n=3$
a)

$$
\operatorname{det} A=\sum_{k=1}^{3} a_{1 k} A_{1 k}=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=3 \cdot 56+1 \cdot(-40)+2 \cdot 2=132
$$

