Example 2.19

For $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 5 & 7 & 0 \\ 4 & 6 & 8\end{array}\right]$ is

$$
M_{11}=\left|\begin{array}{ll}
7 & 0 \\
6 & 8
\end{array}\right|=56, M_{12}=\left|\begin{array}{ll}
5 & 0 \\
4 & 8
\end{array}\right|=40, M_{13}=\left|\begin{array}{ll}
5 & 7 \\
4 & 6
\end{array}\right|=2, M_{21}=\left|\begin{array}{ll}
1 & 2 \\
6 & 8
\end{array}\right|=-4, \ldots
$$

The algebraic complement or cofactor of the element $\boldsymbol{a}_{\boldsymbol{i j}}$ of the matrix \boldsymbol{A} is marked $\boldsymbol{A}_{\boldsymbol{i j}}$. That is a number defined by the formula:

$$
A_{i j}=(-1)^{i+j} M_{i j}
$$

Example 2.20

$$
\begin{aligned}
\text { For } A= & {\left[\begin{array}{lll}
3 & 1 & 2 \\
5 & 7 & 0 \\
4 & 6 & 8
\end{array}\right] \text { is } } \\
& A_{11}=M_{11}=56, A_{12}=-M_{12}=-40, A_{13}=M_{13}=2, A_{21}=-M_{21}=4, \ldots
\end{aligned}
$$

2.6. LAPLACE EXPANSION FOR THE DETERMINANT

The following formulas are applied for a real matrix $\boldsymbol{A}=\left[\boldsymbol{a}_{\boldsymbol{i}}\right]$ of order $\boldsymbol{n} \geq \mathbf{2}$:
$\operatorname{det} A=\sum_{k=1}^{n} a_{i k} A_{i k}$ (Laplace expansion by the \boldsymbol{i} th row),
$\operatorname{det} A=\sum_{k=1}^{n} a_{k j} A_{k j}$ (Laplace expansion by the \boldsymbol{j} th column).

Example 2.21

Determine $\operatorname{det} A$ using Laplace expansion:
a) by the 1 st row
b) by the 2 nd column
if $A=\left[\begin{array}{lll}3 & 1 & 2 \\ 5 & 7 & 0 \\ 4 & 6 & 8\end{array}\right]$.
Solution: $\quad n=3$
a)

$$
\operatorname{det} A=\sum_{k=1}^{3} a_{1 k} A_{1 k}=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=3 \cdot 56+1 \cdot(-40)+2 \cdot 2=132
$$

b)

$$
\begin{aligned}
\operatorname{det} A=\sum_{k=1}^{3} a_{k 2} A_{k 2} & =a_{12} A_{12}+a_{22} A_{22}+a_{32} A_{32} \\
& =1 \cdot(-1)^{1+2}\left|\begin{array}{ll}
5 & 0 \\
4 & 8
\end{array}\right|+7 \cdot(-1)^{2+2}\left|\begin{array}{ll}
3 & 2 \\
4 & 8
\end{array}\right|+6 \cdot(-1)^{3+2}\left|\begin{array}{ll}
3 & 2 \\
5 & 0
\end{array}\right| \\
& =-40+112+60=132
\end{aligned}
$$

Determinant properties:

Let \boldsymbol{A} and \boldsymbol{B} be real square matrices.

1) If a row (column) of the matrix \boldsymbol{A} contains only zeros, then $\operatorname{det} \boldsymbol{A}=\mathbf{0}$.
2) If the matrix \boldsymbol{A} has $\mathbf{2}$ proportional rows (columns), then $\operatorname{det} \boldsymbol{A}=\mathbf{0}$.
3) If a row (column) of the matrix \boldsymbol{A} is a linear combination of the remaining rows (columns) of the matrix A, then $\operatorname{det} \boldsymbol{A}=\mathbf{0}$.
4) The determinant of the unit matrix is $\mathbf{1}$.
5) If \boldsymbol{A} is a triangular or diagonal matrix, then its determinant is equal to the product of the elements of its main diagonal.
6) If the elements of another row (column) of the matrix \boldsymbol{A} are added to a row (column) of the matrix A multiplied by a number, $\operatorname{det} A$ does not change.
7) By changing the place of two rows (columns) of the matrix $A, \operatorname{det} A$ changes the sign.
8) If the elements of a row (column) of a matrix \boldsymbol{A} are multiplied by the number λ, the result is a square matrix \boldsymbol{C} with a determinant

$$
\operatorname{det} C=\lambda \cdot \operatorname{det} A
$$

9) $\quad \operatorname{det} A=\operatorname{det} A^{T}$.
10) $\operatorname{det}(A \cdot B)=\operatorname{det} A \cdot \operatorname{det} B$.

Example 2.22

Calculate $\operatorname{det} A$, using the properties of the determinant, if $A=\left[\begin{array}{llll}5 & 4 & 5 & 4 \\ 1 & 2 & 1 & 4 \\ 2 & 3 & 5 & 4 \\ 0 & 2 & 1 & 1\end{array}\right]$.

Solution:

Method 1 (Laplace expansion by the 1st column):

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{llll}
5 & 4 & 5 & 4 \\
1 & 2 & 1 & 4 \\
2 & 3 & 5 & 4 \\
0 & 2 & 1 & 1
\end{array}\right| R_{1}-5 R_{2}-2 R_{2} \stackrel{9}{=}\left|\begin{array}{cccc}
0 & -6 & 0 & -16 \\
1 & 2 & 1 & 4 \\
0 & -1 & 3 & -4 \\
0 & 2 & 1 & 1
\end{array}\right|=\sum_{k=1}^{4} a_{k 1} A_{k 1}=a_{21} A_{21}= \\
& =1 \cdot(-1)^{2+1}\left|\begin{array}{ccc}
-6 & 0 & -16 \\
-1 & 3 & -4 \\
2 & 1 & 1
\end{array}\right| R_{2}-3 R_{3}=-\left|\begin{array}{ccc}
-6 & 0 & -16 \\
-7 & 0 & -7 \\
2 & 1 & 1
\end{array}\right|=-\sum_{k=1}^{3} a_{k 2} A_{k 2}=-a_{32} A_{32}= \\
& \left.=-1 \cdot(-1)^{3+2}\left|\begin{array}{cc}
-6 & -16 \\
-7 & -7
\end{array}\right|=\left|\begin{array}{cc}
-6 & -16 \mid 8) \\
-7 & -7
\end{array}\right| \begin{array}{cc}
8) \\
=-7 & -16 \\
1 & 1
\end{array}|=14| \begin{array}{ll}
3 & 8 \\
1 & 1
\end{array} \right\rvert\,=14(3-8)=-70 .
\end{aligned}
$$

Method 2 (Laplace expansion by the 4th row):

$$
\begin{aligned}
& \operatorname{det} A=\left|\begin{array}{cccc}
5 & 4 & 5 & 4 \\
1 & 2 & 1 & 4 \\
2 & 3 & 5 & 4 \\
0 & 2 & 1 & 1
\end{array}\right| \stackrel{9}{\mid}\left|\begin{array}{cccc}
5 & -6 & 5 & -1 \\
1 & 0 & 1 & 3 \\
2 & -7 & 5 & -1 \\
0 & 0 & 1 & 0
\end{array}\right|=\sum_{k=1}^{4} a_{4 k} A_{4 k}=a_{43} A_{43}=1 \cdot(-1)^{4+3}\left|\begin{array}{ccc}
5 & -6 & -1 \\
1 & 0 & 3 \\
2 & -7 & -1
\end{array}\right| \stackrel{6}{=} \\
& \stackrel{\text { ๑) }}{=}-\left|\begin{array}{ccc}
5 & -6 & -16 \\
1 & 0 & 0 \\
2 & -7 & -7
\end{array}\right|=-\sum_{k=1}^{3} a_{2 k} A_{2 k}=-a_{21} A_{21}=-1 \cdot(-1)^{2+1}\left|\begin{array}{cc}
-6 & -16 \\
-7 & -7
\end{array}\right|=\left|\begin{array}{cc}
-6 & -16 \\
-7 & -7
\end{array}\right|=-70 .
\end{aligned}
$$

2.7. INVERSE MATRIX

Let A be a real square matrix of order n.
The matrix A is a regularif $\operatorname{det} A \neq 0$. The matrix A is $\operatorname{singularif~} \operatorname{det} A=0$.
Only regular matrix has an inverse matrix.
For a regular matrix A of order n there is a unique matrix B such that

$$
A \cdot B=B \cdot A=I_{n}
$$

where I_{n} is a unit matrix of order n. The matrix B is also a regular matrix of order n, marked by A^{-1}, and is called the inverse matrix of the matrix A.

2.8. DETERMINING THE INVERSE MATRIX BY CALCULATING DETERMINANTS

The inverse matrix $\boldsymbol{A}^{\mathbf{- 1}}$ of a regular matrix \boldsymbol{A} of order \boldsymbol{n} can be determined by the formula:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right]
$$

where $\boldsymbol{A}_{\boldsymbol{i} \boldsymbol{j}}$ is the cofactor of the element $\boldsymbol{a}_{\boldsymbol{i} \boldsymbol{j}}$ of the matrix \boldsymbol{A}.

