9.10 TESTING OF STATISTICAL HYPOTHESES. STATISTICAL CONCLUSION ERRORS

Definition: Null and alternative hypothesis

- The *null* hypothesis is a statement to be tested in an experiment. It is labelled H_0 .
- The *alternative hypothesis* is a statement that is contradictory to H_0 . It is labelled H_a .

There are two option for a decision: reject H_0 or do not reject H_0 .

Definition: Type I and Type II errors

- A *Type I* error occurs when we reject H_0 but in fact H_0 is true (incorrect decision).
- A *Type II* error occurs when we do not reject H_0 but in fact H_0 is false.

The probability of **Type I** error is denoted by α . The probability of **Type II** error is denoted by β .

Remark:

Type I error and Type II are of course incorrect decisions.

The remaining two decision are **correct**:

- Not to reject H_0 when, in fact, H_0 is true (correct decision).
- To reject H_0 when, in fact, H_0 is false (correct decision).

We will introduce two tests in which we want to verify the hypothesis that a population mean is μ_0 . In first (Model I) we assume that standard deviation of the population σ is known.

In the second test (Model II) we do not know the value of σ . In both cases we assume that a population follows a normal distribution $N(\mu, \sigma)$.

Model I of the test is the following.

Suppose that a population follows a normal distribution $N(\mu, \sigma)$ and that the standard deviation of the population σ is known. Null hypothesis is $H_0: \mu = \mu_0$, where μ_0 is a predicted mean value for entire population. From a random sample x we want to check hypothesis $H_0: \mu = \mu_0$ against the alternative hypothesis $H_1: \mu \neq \mu_0$. We assume some preconceived or pre-set a "significance level" α of the test. A pre-set α is the probability that we reject H_0 but in fact H_0 is true i.e., the probability of a Type I error. If α is not given, the accepted standard is to set $\alpha = 0.05$.

We verify the null hypothesis H_0 as follows:

First, we compute a mean \bar{x} of the sample x. Next, we compute the value of random variable u with standard normal distribution N(0,1) using the formula:

$$u = \frac{\bar{x} - \mu_0}{\sigma} \sqrt{n}.$$

From the standard normal distribution N(0,1) table or using inverse normal distribution calculator (see for instance:

http://onlinestatbook.com/2/calculators/inverse normal dist.html),

or using some popular spreadsheet like Excel, OpenOffice Calc, we find such critical value u_{α} that

$$P(|u| \ge u_{\alpha}) = \alpha.$$

The set of values of u defined by inequality $|u| \ge u_{\alpha}$ is a critical area of this test i.e if we get such value u that $|u| \ge u_{\alpha}$ the hypothesis H_0 must be rejected. If $|u| < u_{\alpha}$, we cannot reject hypothesis H_0 .

The test described above is sometimes called a two-sided test since we have a two-sided critical area i.e.

 $|u| \ge u_{\alpha}$ means the same that $u \in (-\infty, -u_{\alpha}] \cup [u_{\alpha}, \infty)$.

This occurs whenever we have the alternative hypothesis of the form $H_a: \mu \neq \mu_0$.

In some cases, however, we must perform one-sided tests.

When the alternative hypothesis is of the form $H_a: \mu < \mu_0$ we have a left-sided critical area i.e. $u \leq u_{\alpha}$. In this case we derive u_{α} such that

$$P(u \le u_{\alpha}) = \alpha.$$

When the alternative hypothesis is of the form $H_a: \mu > \mu_0$ we have a right-sided critical area i.e. $u \ge u_{\alpha}$. In this case we derive u_{α} such that

$$P(u \ge u_{\alpha}) = \alpha.$$

We also perform Model I if a population follows a normal distribution $N(\mu, \sigma)$ and standard deviation is unknown, but the sample is large i.e., it contains several dozen elements. In this case we set $s = \sigma$.

Example 9.34

In 81 randomly picked manufacturing companies, material cost used in the production of one particular product was measured. The mean of these values is $\bar{x} = 540 \in$ and $s = 150 \in$. On a significance level $\alpha = 0.05$, verify the hypothesis, that the average material cost of producing that product is $600 \in$.

Solution:

The null hypothesis H_0 is that the average material cost of producing the product is $600 \notin$ i.e.,

$$H_0: \mu_0 = 600.$$

Since the sample is large, we can assume that $s = \sigma = 150$. We apply Model I.

Compute

$$u = \frac{540 - 600}{150}\sqrt{81} = -3.6.$$

We have

$$P(|u| \ge u_{\alpha}) = 0.05$$

for $u_{\alpha} = 1.96$ (see table, spreadsheet or some inverse normal distribution calculator i.e., <u>http://onlinestatbook.com/2/calculators/inverse normal dist.html</u> (option: outside since the test is two-tailed).

We see that

$$|-3.6| = 3.6 \ge 1.96 = u_{\alpha}.$$

Hence on the significance level $\alpha = 0.05$ the hypothesis H_0 must be rejected in favour of the alternative hypothesis that the average material cost of producing considered product is not equal to $600 \in$.

Model II of the test is the following.

Suppose that a population follows a normal distribution $N(\mu, \sigma)$ and that the mean μ and the standard deviation of the population σ is unknown. A small sample was selected at random from the population. Null hypothesis is H_0 : $\mu = \mu_0$. From a random sample x we want to check H_0 against the alternative hypothesis H_1 : $\mu \neq \mu_0$. We assume some a "significance level" α of the test.

We verify the null hypothesis H_0 as follows:

First, we compute a sample mean $ar{x}$ and a sample standard deviation s

or estimator of the standard deviation \hat{s} . Next, we compute the value of a random variable t using the formula:

$$t = \frac{\bar{x} - \mu_0}{s} \sqrt{n - 1} = \frac{\bar{x} - \mu_0}{\hat{s}} \sqrt{n}.$$

Under condition that H_0 holds random variable t follows student's t – distribution with n - 1 degrees of freedom.

From the t – distribution table or using inverse normal distribution calculator (see for instance: <u>https://www.statology.org/inverse-t-distribution-calculator</u>) or using some popular spreadsheet like Excel, OpenOffice Calc,

we find such critical value t_{lpha} that

$$P(|t| \ge t_{\alpha}) = \alpha.$$

The set of values of t defined by inequality $|t| \ge t_{\alpha}$ is a critical area of this test i.e., if we get from the formula such value t that $|t| \ge t_{\alpha}$ the hypothesis H_0 must be rejected in favour of H_1 . If $|t| < t_{\alpha}$ we cannot reject the hypothesis H_0 .

The test described above is of course two-sided (see Model I) since we have a two-sided critical area i.e.

$$|t| \ge t_{\alpha}$$

This occurs whenever we have the alternative hypothesis of the form $H_1: \mu \neq \mu_0$.

In some cases, however, we have to perform one-sided tests.

When the alternative hypothesis is of the form $H_1: \mu < \mu_0$ we have a left-sided critical area i.e. $t \leq t_{\alpha}$. In this case we derive t_{α} such that

$$P(t \leq t_{\alpha}) = \alpha.$$

When the alternative hypothesis is of the form $H_1: \mu > \mu_0$ we have a right-sided critical area i.e., $t \ge t_{\alpha}$. In this case we derive t_{α} such that

$$P(t\geq t_{\alpha})=\alpha.$$

Example 9.35

A machine produces metal plates of certain dimensions, with their nominal thickness being $0.04 \ mm$. After randomly selecting and measuring 25 plates, their average thickness was

 $\bar{x} = 0.037 \ mm$ and $\hat{s} = 0.005 \ mm$. Is it possible to conclude that produced plates are thinner than 0.04 mm? Assume the significance level $\alpha = 0.01$.

Solution:

The null hypothesis H_0 is that, the average thickness of metal plates is not less than 0.04 mm,

 $H_0: \mu_0 \ge 0.04$ and $H_1: \mu_0 < 0.04$.

Compute

$$t = \frac{0.037 - 0.04}{0.005}\sqrt{25} = -3$$

We use t - distribution with 24 degree of freedom and test is left-sided.

From the t – distribution table or using inverse normal distribution calculator (see for instance: <u>https://www.statology.org/inverse-t-distribution-calculator</u>) or using some popular spreadsheet like Excel, OpenOffice Calc,

we get $t_{\alpha} = -2.492$.

We have $t = -3 < -2.492 = t_{\alpha}$.

Hence t belong to a critical area. We must reject H_0 in favour of H_1 . Produced plates are thinner than 0.04 mm.

