9.11 REGRESSION, CORRELATION

Suppose that we have two data samples of different statistical features of some population

$$
x: x_{1}, x_{2}, \ldots, x_{n} \quad y: \quad y_{1}, y_{2}, \ldots, y_{n}
$$

We are interested in the following question: Is there any relation between these two features of the population?

Definition: Covariance

Covariance of x, y is defined by

$$
\operatorname{cov}(x, y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Definition: Pearson's correlation coefficient

Pearson's correlation coefficient is defined by

$$
r=\frac{\operatorname{cov}(x, y)}{s(x) s(y)}
$$

where $s(x)$ is the standard deviation of x and $s(y)$ is the standard deviation of y.

Remark:
The coefficient r has a value between -1 and 1 .
The value 1 means that there is a total positive linear correlation between x and $y, 0$ that there is no linear correlation between x and y, and -1 means that there is a total negative linear correlation between x and y.

Example 9.36

For
$x: 3,3,4,5,5 \quad y: 5,7,6,4,8$
$\bar{x}=4, \quad \bar{y}=6$ $\operatorname{cov}(x, y)=$
$\frac{1}{5}((3-4)(5-6)+(3-4)(7-6)+(4-4)(6-6)+(5-4)(4-6)+(5-4)(8-6))$
$=\frac{1}{5}(1-1+0-2+2)=0$
$r=\frac{0}{s(x) s(y)}=0$.

For

$$
\begin{gathered}
x: 3,3,4,5,5 \quad y: 5,8,6,10 \\
\bar{x}=4, \quad \bar{y}=7 \\
\operatorname{cov}(x, y)= \\
\frac{1}{5}((3-4)(5-7)+(3-4)(8-7)+(4-4)(6-7)+(5-4)(6-7) \\
+(5-4)(10-7))=\frac{1}{5}(2-1+0-1+3)=\frac{3}{5} \\
s^{2}(x)= \\
\frac{1}{5}\left((3-4)^{2}+(3-4)^{2}+(4-4)^{2}+(5-4)^{2}+(5-4)^{2}\right) \\
=\frac{1}{5}(1+1+0+1+1)=\frac{4}{5} \\
s(x)=\sqrt{\frac{4}{5}}=\frac{2}{\sqrt{5}} . \\
s^{2}(y)= \\
\frac{1}{5}\left((5-7)^{2}+(8-7)^{2}+(6-7)^{2}+(6-7)^{2}+(10-7)^{2}\right) \\
=\frac{1}{5}(4+1+1+1+9)=\frac{16}{5} \\
r(y)=\frac{16}{5}=\frac{4}{\sqrt{5}} . \\
r=\frac{3}{5} \\
\frac{2}{\sqrt{5}} \cdot \frac{4}{\sqrt{5}}=\frac{3}{8}=0.375
\end{gathered}
$$

9.11.1 Linear regression

Suppose that we have two samples:

$$
x: \quad x_{1}, x_{2}, \ldots, x_{n}, \quad y: \quad y_{1}, y_{2}, \ldots, y_{n}
$$

By using linear regression, we model a relationship between two variables x and y.
One of the variables (x) is called independent (or explanatory) variable. The second variable (y) is called dependent (or response) variable.

The relation between x and y is modelled using a linear function

$$
y=a x+b
$$

whose unknown parameters a, b are estimated from the data.
To find a, b we use the "least squares" method. This method builds the line which minimizes the squared distance of each point from this line. We call this line a line of best fit.

We must solve the following problem

$$
\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2} \rightarrow \min , a, b=?
$$

It is possible to demonstrate that such minimizing problem has always solution a, b given by

$$
a=\frac{\operatorname{cov}(x, y)}{s^{2}(x)}, b=\bar{y}-a \bar{x},
$$

where

$$
\operatorname{cov}(x, y)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

is covariance of x, y,

$$
s^{2}(x)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

is sample variation of x and

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

are sample means of x and y respectively.

Example 9.38

Consider data

$$
x: 3,5,2,2,1,4,6,1 \quad y: 3,4,3,4,2,5,4,3 .
$$

Figure 9.8. Regression function $y=\frac{1}{3} x-\frac{5}{2}$.
We have

$$
\begin{gathered}
\operatorname{cov}(x, y)=1, s^{2}(x)=3, \quad \bar{x}=3, \quad \bar{y}=\frac{7}{2} \\
a=\frac{\operatorname{cov}(x, y)}{s^{2}(x)}=\frac{1}{3}, \quad b=\bar{y}-a \bar{x}=\frac{7}{2}-\frac{1}{3} \cdot 3=\frac{5}{2} .
\end{gathered}
$$

A linear regression is $y=\frac{1}{3} x+\frac{5}{2}$. We can see its graph in the figure.

Exercise 9.8

Find a linear regression function for data:

$$
x: 1,2,4 \quad y: 0,2,1 .
$$

Solution:

$$
y=\frac{3}{14} x+\frac{1}{2} .
$$

