9.2 EVENTS. PROBABILITY

Example 9.12

Suppose that we conduct an experiment by tossing two different fair coins. Let H represents heads and T represents tails. Then any possible outcome of the experiment is an element of the set

$$
\Omega=\{(H, H),(H, T),(T, H),(T, T)\} .
$$

Definition: : Sample space, elementary event

A sample space is a set Ω of elements that correspond one to one with the outcomes of an experiment. Each of the elements of Ω is called an elementary event.

Definition: Event

An event is any subset of a sample space.

Remark

The sample space Ω is an event (a certain event, sure event), any elementary event is an event, the empty set \varnothing is an event (an impossible event).

Example 9.13

Each letter of the word leopard is written on a separate card and the cards are shuffled. List a sample space for the outcome of drawing one card.

Answer: $\Omega=\{l, e, o, p, a, r, d\}$ (also $\Omega=\{e, p, l, a, d, o, r\}$ since the order is not important).
Now suppose we are interested in whether the letter drawn is a vowel. We call the drawing of a vowel an event A. The event A is the occurrence of any of the outcomes e, o, a. It can be seen as the set $A=\{e, o, a\}$ which is a subset of the sample space Ω.

Definition: Classical definition of probability

Let Ω be a sample space of an experiment in which there are n possible outcomes, each equally likely. If an event A is a subset of Ω such that A contains k elements, then the probability of an event A, denoted by $P(A)$, is given by

$$
P(A)=\frac{k}{n} .
$$

Example 9.14

Suppose that we conduct an experiment by tossing two different six-sided dices. What is the probability that we get ten in total?

Solution:

The number of elementary events is $n=6 \cdot 6=36$. Denote by A the event that we get the sum ten. We have

$$
A=\{(6,4),(5,5),(4,6)\}
$$

hence $k=3$ and

$$
P(A)=\frac{3}{36}=\frac{1}{12} .
$$

Let Ω be now a finite or infinite set. We will call Ω a sample space. Denote by F the class of subsets of Ω. Elements of F will be called events. If Ω is finite, all its subsets are events. If Ω is not finite, we consider as events a large infinite class of Ω subsets.

Definition: Probability (axiomatic)

A probability of an event A is a real number $P(A)$ which satisfies the following three conditions:

1. $P(A) \geq 0$
2. $P(\Omega)=1$
3. For every sequence A_{1}, A_{2}, \ldots of mutually exclusive events it holds

$$
P\left(A_{1} \cup A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots .
$$

Properties of probability

1. $P(\varnothing)=0$
2. $0 \leq P(A) \leq 1$
3. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
4. $A \subset B \Rightarrow P(A) \leq P(B)$
5. $P(\bar{A})=1-P(A)$
6. $P(A \backslash B)=P(A)-P(A \cap B)$
7. $B \subset A \Rightarrow P(A \backslash B)=P(A)-P(B)$
8.

$$
\begin{aligned}
P(A \cup B \cup C) & =P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C) \\
& +P(A \cap B \cap C)
\end{aligned}
$$

Co-funded by the

