## 9.2 EVENTS. PROBABILITY

# Example 9.12

Suppose that we conduct an experiment by tossing two different fair coins. Let H represents heads and T represents tails. Then any possible outcome of the experiment is an element of the set

 $\Omega = \{ (H, H), (H, T), (T, H), (T, T) \}.$ 

#### Definition: : Sample space, elementary event

A sample space is a set  $\Omega$  of elements that correspond one to one with the outcomes of an experiment. Each of the elements of  $\Omega$  is called an *elementary event*.

**Definition: Event** 

An *event* is any subset of a sample space.



The sample space  $\Omega$  is an event (*a certain event*, *sure event*), any elementary event is an event, the empty set  $\emptyset$  is an event (*an impossible event*).

## Example 9.13

Each letter of the word *leopard* is written on a separate card and the cards are shuffled. List a sample space for the outcome of drawing one card.

Answer:  $\Omega = \{l, e, o, p, a, r, d\}$  (also  $\Omega = \{e, p, l, a, d, o, r\}$  since the order is not important).

Now suppose we are interested in whether the letter drawn is a vowel. We call the drawing of a vowel an event A. The event A is the occurrence of any of the outcomes e, o, a. It can be seen as the set  $A = \{e, o, a\}$  which is a subset of the sample space  $\Omega$ .

### Definition: Classical definition of probability

Let  $\Omega$  be a sample space of an experiment in which there are n possible outcomes, each equally likely. If an event A is a subset of  $\Omega$  such that A contains k elements, then the probability of an event A, denoted by P(A), is given by

$$P(A)=\frac{k}{n}.$$





2019-1-HR01-KA203-061000

#### Example 9.14

Suppose that we conduct an experiment by tossing two different six-sided dices. What is the probability that we get ten in total?

#### Solution:

The number of elementary events is  $n = 6 \cdot 6 = 36$ . Denote by A the event that we get the sum ten. We have

$$A = \{(6, 4), (5, 5), (4, 6)\}$$

hence k = 3 and

$$P(A) = \frac{3}{36} = \frac{1}{12}.$$

Let  $\Omega$  be now a finite or infinite set. We will call  $\Omega$  a sample space. Denote by F the class of subsets of  $\Omega$ . Elements of F will be called events. If  $\Omega$  is finite, all its subsets are events. If  $\Omega$  is not finite, we consider as events a large infinite class of  $\Omega$  subsets.

#### **Definition: Probability (axiomatic)**

A probability of an event A is a real number P(A) which satisfies the following three conditions:

1.  $P(A) \geq 0$ 

2.  $P(\Omega) = 1$ 

3. For every sequence  $A_1, A_2, \dots$  of mutually exclusive events it holds

 $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + \cdots$ 

Properties of probability

- 1.  $P(\emptyset) = 0$
- $2. \ 0 \le P(A) \le 1$
- 3.  $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 4.  $A \subset B \Rightarrow P(A) \le P(B)$
- 5.  $P(\bar{A}) = 1 P(A)$
- 6.  $P(A \setminus B) = P(A) P(A \cap B)$
- 7.  $B \subset A \Rightarrow P(A \setminus B) = P(A) P(B)$
- 8.

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C)$  $+ P(A \cap B \cap C)$ 





