9.3 GEOMETRIC PROBABILITY

As a sample space we consider a 1D, 2D or 3D set with a finite measure $m(\Omega)$ length, area or volume respectively. As events we consider subsets of Ω with finite measure.

Definition: geometric probability

Probability that a point x lying in a set Ω lies also in its subset A with a finite measure $m(A)$ is defined as the ratio

$$
P(A)=\frac{m(A)}{m(\Omega)} .
$$

Example 9.15

A circle is inscribed in a square. A point is selected at random from the area of the square. Calculate the probability that it lies inside the circle.

Solution:

Let Ω be a square and A be a circle of radius $r>0$ that is inscribed in Ω. We have

$$
\begin{gathered}
m(A)=\pi r^{2}, \quad m(\Omega)=4 r^{2} . \\
P(A)=\frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4}
\end{gathered}
$$

Example 9.16

Two ships have arriving time between $\mathbf{2}$ pm and $\mathbf{3}$ pm. Both ships must dock on the same berth. Once docked, it takes each ship $\mathbf{1 0}$ minutes to restock and leave the dock. What is the probability that the ships won't have to wait for the berth?

Solution:

As a unit of time, we set 10 minute. A time interval between 2 and 3 pm we denote by [0,6]. Let x be the time when the first boat will arrive, and y be the time when the second boat will arrive. We have $x, y \in[0,6]$ and $|x-y| \geq 1$.

Let $\Omega=[0,6] \times[0,6]$ be a sample space. The area of Ω is $\mu(\Omega)=36$.
The event that both ships won't have to wait can be represented by the set

$$
A=\{(x, y) \in \Omega:|x-y| \geq 1\} .
$$

Since

$$
A=\{(x, y) \in \Omega: y \leq x-1 \text { or } y \geq x+1\},
$$

the area of the set A is

$$
\mu(A)=\frac{1}{2} \cdot 5 \cdot 5+\frac{1}{2} \cdot 5 \cdot 5=25 .
$$

From the geometric probability formula, we have

$$
P(A)=\frac{m(A)}{m(\Omega)}=\frac{25}{36} \approx 0.6944 .
$$

There is a 69.44% chance that the ships won't have to wait for the berth.

Figure 9.1. Illustration for Example 9.16

