### 9.4 COMPLETE SYSTEM OF EVENTS. BAYES' RULE

## Definition: Independent events

Two events $A$ and $B$ are called independent (statistically independent) if

$$
P(A \cap B)=P(A) P(B) .
$$

## Remark

Physically independent experiments are assumed statistically independent, e.g., successive throws of a coin, a die, etc.

## Example 9.17

Suppose that two balls are drawn with replacement (the first ball is replaced before the second is drawn) at random from a bag containing 4 red and 3 black balls. What is the probability that both balls selected are red?

## Solution:

Let $A$ be the event of drawing a red ball the first time, and $B$ the event of drawing a red ball the second time. The sample space $\Omega$ consists of all ordered pairs ( $x, y$ ), where both $x$ and $y$ denote elements of a set of 7 outcomes ( 4 red, 3 black).

The multiplication rule implies that $\Omega$ contains $7 \cdot 7=49$ elements. Since $A \cap B$ consists of the ordered pairs of the form (red, red), there is $4 \cdot 4=16$ elements in $A \cap B$. Therefore,

$$
P(A \cap B)=\frac{16}{49}=\frac{4}{7} \cdot \frac{4}{7}=P(A) P(B) .
$$

Hence, events $A$ and $B$ are independent.

## Example 9.18

Suppose that two balls are drawn without replacement (the first ball is not replaced before the second is drawn) at random from a bag containing 4 red and 3 black balls.

Any one of 7 balls may be selected on the first draw. One of only 6 balls may be chosen on the second draw (no replacement).

Therefore, there are $7 \cdot 6=42$ elements in $\Omega$ (ordered pairs without repetitions).
Let $A$ be the event of drawing a red ball the first time, and $B$ the event of drawing a red ball the second time.

Co-funded by the

There is of course $4 \cdot 6=24$ elements of the set $A$ and $6 \cdot 4=24$ elements of the set $B$. This gives

$$
P(A)=P(B)=\frac{24}{42}=\frac{4}{7}
$$

We have $4 \cdot 3=12$ elements of $A \cap B$. Therefore, we have

$$
P(A \cap B)=\frac{12}{42}=\frac{2}{7} \neq \frac{4}{7} \cdot \frac{4}{7}=P(A) P(B) .
$$

Hence, events $A$ and $B$ are dependent.

## Remark

Since in Example 9.18 $\quad P(A \cap B)=\frac{12}{42}=\frac{4}{7} \cdot \frac{3}{6} \quad$ and $P(A)=\frac{4}{7} \quad$ we can interpret the second factor $\frac{3}{6}$ as the probability that the second ball drawn is red under the condition that the first ball drawn was red. Denote this by $P(A \mid B)$.

The last remark suggests a general law

## Conditional probability formula

Let $P(A)$ denote the probability of an event $A$, and $P(B \mid A)$ denote the probability of an event $B$ after event $A$ has occurred. If $P(A \cap B)$ is the probability that $A$ and $B$ occur, then

$$
P(A \cap B)=P(A) P(B \mid A) .
$$

If $P(A)>0$ we have conditional probability formula

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

or if $P(B)>0$

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## Remark

In the Example 9.18 $P(A \mid B)=\frac{3}{6}=\frac{1}{2}$ denotes the probability of an event $A$ after event $B$ has occurred. In the example the probability that the first ball drown was red under the condition that the second ball drawn is red.
$P(A \mid B)$ is called "the conditional probability of $A$ given $B$ ", or "the probability of $A$ under the condition $B^{\prime \prime}$.

## Remark:

If $A$ and $B$ are independent events, then $P(A \mid B)=P(A)$ if $P(B)>0$.

## Exercise 9.3

Show that if $A$ and $B$ are independent events, then
$A$ and $\bar{B}$ are independent events.

## Solution:

$$
\begin{aligned}
P(A \cap \bar{B}) & =P(A \cap(\Omega \backslash B))=P(A \backslash B)=P(A)-P(A \cap B)=P(A)-P(A) P(B) \\
& =P(A)(1-P(B))=P(A) P(\bar{B})
\end{aligned}
$$

## Exercise 9.4

Show that if $A$ and $B$ are independent events, then $\bar{A}$ and $\bar{B}$ are independent events.

## Solution:

$$
\begin{aligned}
P(\bar{A} \cap \bar{B}) & =P((\Omega \backslash A) \cap(\Omega \backslash B))=P(\Omega \backslash(A \cup B))=1-P(A \cup B) \\
& =1-P(A)-P(B)+P(A \cap B)=1-P(A)-P(B)+P(A) P(B) \\
& =(1-P(A))(1-P(B))=P(\bar{A}) P(\bar{B}) .
\end{aligned}
$$

## Bayes' rule

Suppose that $P(B)>0$. Then

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)} .
$$

We say that $\Omega$ is partitioned into cases $E_{1}, \ldots, E_{n}$ if events $E_{1}, \ldots, E_{n}$ are mutually disjoint sets and $\Omega=E_{1} \cup \ldots \cup E_{n}$.

## Total Probability Formula

Suppose that the sample space $\Omega$ is partitioned into $E_{1}, \ldots, E_{n}$ cases.
Then for any event $A$

$$
P(A)=P\left(A \mid E_{1}\right) P\left(E_{1}\right)+\cdots+P\left(A \mid E_{n}\right) P\left(E_{n}\right) .
$$

## Example 9.19

Three identical bowls are labelled 1, 2,3. First bowl contains 3 red and 3 blue marbles. Second bowl contains 4 red and 2 blue marbles. Third bowl contains 1 red and 5 blue. First, a bowl is randomly selected, and then a marble is randomly selected from the bowl.

What is the probability that a marble selected is blue?

## Solution

$E_{i}-$ an event that bowl number $i$ is selected. We have $P\left(E_{i}\right)=\frac{1}{3}$.
$A$ - an event that blue marble is selected. We have

$$
P\left(A \mid E_{1}\right)=\frac{1}{2}, \quad P\left(A \mid E_{2}\right)=\frac{1}{3}, \quad P\left(A \mid E_{3}\right)=\frac{5}{6}
$$

and

$$
P(A)=P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+P\left(A \mid E_{3}\right) P\left(E_{3}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{1}{3}+\frac{5}{6} \cdot \frac{1}{3}=\frac{5}{9} .
$$

Given that the selected marble was blue, what is the probability that bowl 2 was selected?

## Solution:

Using Bayes' rule, we get

$$
P\left(E_{2} \mid A\right)=\frac{P\left(A \mid E_{2}\right) P\left(E_{2}\right)}{P(A)}=\frac{\frac{1}{3} \cdot \frac{1}{3}}{\frac{5}{9}}=\frac{1}{5} .
$$

## Example 9.20

A certain disease has an incidence rate of $1 \%$. Suppose that for some diagnostic test the false negative rate is $10 \%$ and false positive rate is $2 \%$. Compute the probability that a person, chosen at random from the population, who tests positive actually has the disease.

## Solution:

Define the events for the person in question:
$D$ : has the disease, $T$ : test indicate disease (test is positive)
The complementary events are:
$\bar{D}$ : has not the disease, $\bar{T}$ : test does not indicate disease (test is negative).
Since disease has an incidence rate of $1 \%$, we have

$$
P(D)=0.01
$$

and for the complementary event

$$
P(\bar{D})=1-P(D)=0.99 .
$$

Since the false negative rate is $10 \%$, we have

$$
P(\bar{T} \mid D)=0.1 .
$$

Since the false positive rate is $2 \%$, we have

$$
P(T \mid D)=0.02
$$

We have to compute $P(D \mid T)$.
We use Bayes' rule

$$
P(D \mid T)=\frac{P(T \mid D) P(D)}{P(T)},
$$

where

$$
P(T \mid D)=1-P(\bar{T} \mid D)=1-0.1=0.9 \text {. }
$$

By the total probability formula

$$
P(T)=P(T \mid D) P(D)+P(T \mid \bar{D}) P(\bar{D})=0.9 \cdot 0.01+0.02 \cdot 0.99=0.0288
$$

Finally,

$$
P(D \mid T)=\frac{0.9 \cdot 0.01}{0.028}=0.3125 .
$$

Only $31.25 \%$ of randomly selected people whose test is positive has in fact a disease.
The result seems surprising. The low incidence of the disease in the population is a critical variable here.

## Exercise 9.5

In the above example compute the probability that a person, chosen at random from the population, who tests negative actually has not the disease.

## Solution:

0.99897

