9.5 DISCRETE PROBABILITY DISTRIBUTIONS

Definition: random variable

A real valued function X defined on the sample space Ω is called a random variable.
Remark:
We write $X: \Omega \rightarrow \mathbb{R}$ and $X(\omega)$ is a value of X for the event ω in Ω.

Example 9.21

Suppose that we are tossing a coin. Then, sample space is $\Omega=\{H, T\}$, where H represents head and T represents tail. We define a random variable $X: \Omega \rightarrow \mathbb{R}$ by

$$
X(H)=1 \text { and } X(T)=0 .
$$

Example 9.22

Suppose that we are rolling a dice. Then, sample space is $\Omega=\{1,2,3,4,5,6\}$, where the numbers represent the numbers on the dice. We define a random variable $X: \Omega \rightarrow \mathbb{R}$ by

$$
X(1)=1, X(2)=2, X(3)=3, X(4)=4, X(5)=5, X(6)=6 .
$$

We simply say that X is a number of dots rolled.

Remark

If a coin, we are tossing in Example 9.21 is fair the probability that we get a head is $\frac{1}{2}$ and the probability that we get a tail is $\frac{1}{2}$. We write this:

$$
P(H)=P(\{\omega \in \Omega: X(\omega)=1\})=\frac{1}{2}
$$

and

$$
P(T)=P(\{\omega \in \Omega: X(\omega)=0\})=\frac{1}{2} .
$$

For simplicity we will write $P(X=x)=P(\{\omega \in \Omega: X(\omega)=x\})$.
Similarly, we understand the notation: $P(X<x), P(X>x), P(X \leq x), P(X \geq x)$.

Definition: cumulative distribution function

The cumulative distribution function (distribution function) of a random variable \boldsymbol{X} is defined by $F(x)=P(X \leq x)$ for every real number x.

Properties of the cumulative distribution function

1. For every real x : $0 \leq F(x) \leq 1$
2. $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$
3. $\lim _{x \rightarrow a^{+}} F(x)=F(a)$
4. F is nondecreasing

Definition: discrete random variable

A random variable is called discrete if it takes on with positive probability either a finite or at most a countably infinite set of discrete values i.e., there exists a finite sequence x_{1}, \ldots, x_{n} such that
(1)

$$
P\left(X=x_{i}\right)=p_{i}, \quad \sum_{i=1}^{n} p_{i}=1, p_{1}, \ldots, p_{n} \text { positive numbers }
$$

or there exists an infinite sequence x_{1}, x_{2}, \ldots such that
(2)

$$
P\left(X=x_{i}\right)=p_{i}, \quad \sum_{i=1}^{\infty} p_{i}=1, \quad p_{1}, p_{2}, \ldots \text { positive numbers. }
$$

Definition: probability distribution

The formula (1) or resp. (2) is called probability distribution of discrete random variable.
Moreover, (1) can be written in the form

$X=x_{i}$	x_{1}	x_{2}	\ldots	x_{n}
$P\left(X=x_{i}\right)$	p_{1}	p_{2}	\ldots	p_{n}

or simply

x_{i}	x_{1}	x_{2}	\ldots	x_{n}
p_{i}	p_{1}	p_{2}	\ldots	p_{n}

Remark: In Example 9.21 if the coin is fair, we have

x_{i}	0	1
p_{i}	0.5	0.5

Definition: Expected value

The expected value (expectation or mean value) of a discrete random variable X is defined by

$$
E(X)=\sum_{i} x_{i} P\left(X=x_{i}\right) .
$$

Linearity of the expected value

If $E(X)<\infty$ and $E(y)<\infty$, then for any reals a, b

$$
E(a X+b Y)=a E(X)+b E(Y) .
$$

Expected value of a function of X .

Let $Y=g(X)$, where g is a function of discrete random variable X. Then Y is a discrete random variable with expectation

$$
E(Y)=\sum_{i} g\left(x_{i}\right) P\left(X=x_{i}\right) .
$$

Definition: Variance, standard deviation

The variance of a discrete random variable X is defined by

$$
V(X)=E(X-E(X))=E\left(X^{2}\right)-E(X)^{2} .
$$

The standard deviation of X is defined by

$$
\sigma(X)=\sqrt{V(X)} .
$$

Example 9.23

A random variable X has the following distribution

$X=x_{i}$	-2	0	2	3
$P\left(X=x_{i}\right)$	0.2	0.4	0.1	0.3

Compute: $E(X), E\left(X^{2}\right), V(X)$ and $\sigma(X)$. Sketch the graph of a cumulative distribution function.

Solution:

$$
\begin{aligned}
E(X) & =(-2) \cdot(0.2)+0 \cdot(0.4)+2 \cdot(0.1)+3 \cdot(0.3)=0.7 \\
E\left(X^{2}\right) & =(-2)^{2} \cdot(0.2)+0^{2} \cdot(0.4)+2^{2} \cdot(0.1)+3^{2} \cdot(0.3)=3.9
\end{aligned}
$$

$$
\begin{aligned}
& V(X)=3.9-(0.7)^{2}=3.41 \\
& \sigma(X)=\sqrt{3.41} \approx 1.8466
\end{aligned}
$$

Discret random variable cumulative distribution

Figure 9.2. Illustration to Example 9.23

Remark

A random variable $Y=X^{2}$ in the above example has the following distribution:

$Y=y_{i}$	0	4	9
$P\left(Y=y_{i}\right)$	0.4	0.3	0.3

$$
P(Y=0)=P\left(X^{2}=0\right)=P(X=0)=0.4
$$

$$
\begin{aligned}
P(Y=4) & =P\left(X^{2}=4\right)=P(X=2 \text { or } X=-2)=P(X=-2)+P(X=2) \\
& =0.2+0.1=0.3 .
\end{aligned}
$$

Note that events $\{X=-2\}$ and $\{X=2\}$ are disjoint, hence the probability of its sum is equal to the sum of its probabilities.

$$
P(Y=9)=P\left(X^{2}=9\right)=P(X=3)=0.3
$$

Note that $P(X=-3)=0$.
By using the distribution of $Y=X^{2}$ we can compute $E\left(X^{2}\right)$ the other way as follows,

$$
E\left(X^{2}\right)=E(Y)=0 \cdot 0.4+4 \cdot 0.3+9 \cdot 0.3=3.9 .
$$

Example 9.24

Suppose that we are rolling two dice. We define a random variable X as the sum of the numbers obtained. Find the probability distribution of X. Compute expected value, variance and standard deviation of a random variable X.

Solution

The sample space of the experiment is

$$
\begin{gathered}
\Omega=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6), \\
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6), \\
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5)(6,6)\}
\end{gathered}
$$

The number of elements of Ω is 36 .
Using the natural definition of probability, we have:

$$
\begin{aligned}
& P(X=2)=P(\{(1,1)\})=\frac{1}{36} \\
& P(X=3)=P(\{(1,2),(2,1)\})=\frac{2}{36}=\frac{1}{18} \\
& P(X=4)=P(\{(1,3),(2,2),(3,1)\})=\frac{3}{36}=\frac{1}{12}
\end{aligned}
$$

$$
P(X=5)=P(\{(1,4),(2,3),(3,2),(4,1)\})=\frac{4}{36}=\frac{1}{9}
$$

$$
P(X=6)=P(\{(1,5),(2,4),(3,3),(4,2),(5,1)\})=\frac{5}{36}
$$

$$
P(X=7)=P(\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\})=\frac{6}{36}=\frac{1}{6}
$$

$$
P(X=8)=P(\{(2,6),(3,5),(4,4),(5,3),(6,2)\})=\frac{5}{36}
$$

$$
P(X=9)=P(\{(3,6),(4,5),(5,4),(6,3)\})=\frac{4}{36}=\frac{1}{9}
$$

$$
P(X=10)=P(\{(4,6),(5,5),(6,4)\})=\frac{3}{36}=\frac{1}{12}
$$

$$
P(X=11)=P(\{(5,6),(6,5)\})=\frac{2}{36}=\frac{1}{18}
$$

$$
P(X=12)=P(\{(6,6)\})=\frac{1}{36} .
$$

The probability distribution of X written in a table is:

$X=x_{i}$	2	3	4	5	6	7	8	9	10	11	12
$P\left(X=x_{i}\right)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

The expected value $E(X)$ of X is computed as:
$E(X)=2 \cdot \frac{1}{36}+3 \cdot \frac{1}{18}+4 \cdot \frac{1}{12}+5 \cdot \frac{1}{9}+6 \cdot \frac{5}{36}+7 \cdot \frac{1}{6}+8 \cdot \frac{5}{36}+9 \cdot \frac{1}{9}+10 \cdot \frac{1}{12}+11 \cdot \frac{1}{18}+$ $12 \cdot \frac{1}{36}=7$

The variance of X is computed in two steps. First, we compute the expected value of X^{2}.
$E\left(X^{2}\right)=2^{2} \cdot \frac{1}{36}+3^{3} \cdot \frac{1}{18}+4^{2} \cdot \frac{1}{12}+5^{2} \cdot \frac{1}{9}+6^{2} \cdot \frac{5}{36}+7^{2} \cdot \frac{1}{6}+8^{2} \cdot \frac{5}{36}+9^{2} \cdot \frac{1}{9}+10^{2}$

$$
\cdot \frac{1}{12}+11^{2} \cdot \frac{1}{18}+12^{2} \cdot \frac{1}{36}=\frac{329}{6} \approx 54.83
$$

Finally, we compute the variance,
$V(X)=E\left(X^{2}\right)-E(X)^{2} \approx 54.83-7^{2}=5.83$.
The standard deviation is
$\sigma(X)=\sqrt{V(X)} \approx 2.42$.

