9.7 CONTINUOUS PROBABILITY DISTRIBUTIONS

Definition: continuous random variable

We call a random variable X continuous, if there exists a continuous (almost everywhere) nonnegative function f such that for any real number a

$$
P(X \leq a)=\int_{-\infty}^{a} f(x) d x
$$

The function f is called the probability density function (density function) of a random variable X.

Remark

If a given function is continuous except for a finite number of points then it is continuous almost everywhere.

If \boldsymbol{f} is a probability density function, then

$$
\int_{-\infty}^{\infty} f(t) d t=1
$$

Remark:

The cumulative distribution function (distribution function) of a continuous random variable \boldsymbol{X} is defined by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

for every real number \boldsymbol{x}.

Cumulative distribution function of continuous variable and probability
$1 \quad P(X \geq a)=P(X>a)=1-F(a)$
$2 P(a \leq X \leq b)=P(a<X \leq b)=P(a \leq X<b)=P(a<X<b)=F(b)-F(a)$
$3 \quad P(X=a)=0$

Example 9.27

Given is a probability density function of a random variable X,

$$
f(x)= \begin{cases}1, & x \in[0,1] \\ 0, & \text { elswhere } .\end{cases}
$$

Find the cumulative distribution function F of a random variable X.

Solution:

We will use the formula for the cumulative distribution function. We must consider three cases:

1. $x<0: \quad F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0$
2. $0 \leq x \leq 1$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{x} 1 d t=0+x=x
$$

3. $x>1$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{1} 1 d t+\int_{1}^{x} 0 d t=0+1+0=1
$$

Finally, a distribution function is given by

$$
F(x)=\left\{\begin{array}{rr}
0, & x \leq 0 \\
x, & 0<x \leq 1 \\
1, & x \geq 1 .
\end{array}\right.
$$

Its graph is given below.

Figure 9.3. Illustration for Example 9.27

Definition: uniform random variable (continuous uniform distribution)

Uniform (rectangular) random variable X on the interval $[a, b]$ is a variable with the probability density

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a} & \text { if } x \in[a, b] \\
0 & \text { otherwise }
\end{array}\right.
$$

9.7.1 Cumulative distribution function of a uniform random variable

The cumulative distribution function of a uniform random variable \boldsymbol{X} is given by

$$
F(x)=\left\{\begin{array}{cc}
0, & x<a \\
\frac{1}{b-a}, & a \leq x \leq b . \\
1, & x>b
\end{array}\right.
$$

Exercise 9.6

Find the cumulative distribution function of a uniform random variable X on the interval $[1,4]$.

Solution:

Since $a=1, b=4$, we have $b-a=4-1=3$ and

$$
F(x)=\left\{\begin{array}{lc}
0, & x<1 \\
\frac{1}{3}, & x \in[1,4] \\
1, & x>4 .
\end{array}\right.
$$

Definition: Expected value

The expected value (expectation or mean value) of a continuous random variable X is defined by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x,
$$

where \boldsymbol{f} is a probability density function of \boldsymbol{X}.

Similarly, as for discrete variables we have a linearity of $E(X)$.
If $E(X)<\infty$ and $E(y)<\infty$, then for any reals a, b

$$
E(a X+b Y)=a E(X)+b E(Y) .
$$

Expected value of a function of X

Let $Y=g(X)$, where g is a continuous function of a continuous random variable X with probability density function f. Then Y is a continuous random variable and it holds

$$
E(Y)=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Similarly, as for discrete variables we define:
The variance of X

$$
V(X)=E(X-E(X))=E\left(X^{2}\right)-E(X)^{2} .
$$

The standard deviation of X

$$
\sigma(X)=\sqrt{V(X)} .
$$

The standard deviation of X is also denoted by σ and variance by σ^{2}.

Example 9.28

Compute $E(X), E\left(X^{2}\right), V(X), \sigma(X)$ for uniform random variable on the interval $[0,1]$.

Solution:

The density is given by
$f(x)=1 \quad$ for $\quad x \in[0,1]$ and $f(x)=0$ elsewhere.
Thus, we have

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x d x=\frac{1}{2} \\
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{1} x^{2} d x=\frac{1}{3} \\
V(X) & =\frac{1}{3}-\left(\frac{1}{2}\right)^{2}=\frac{1}{12} \\
\sigma(X) & =\sqrt{\frac{1}{12}} \approx 0.2887 .
\end{aligned}
$$

