9.8 NORMAL DISTRIBUTION

Definition: Normal distribution

A normal (Gaussian) distribution is a continuous distribution with density

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty
$$

It is denoted by $N(\mu, \sigma)$, where μ is mean and σ is standard deviation.

Definition: Standard normal distribution

A standard normal (Gaussian) distribution is a normal (Gaussian) distribution with mean $\mu=0$ and variance $\sigma^{2}=1$. Probability density function is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, \quad-\infty<x<\infty .
$$

It is denoted by $N(0,1)$.

Figure 9.4: Standard normal distribution

Figure 9.5: Normal distribution $\mu=1, \sigma=0.7$

Remark:

The graph of normal distribution density function is called Gaussian curve.

The cumulative distribution function of a normal random variable is given by

$$
F(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}} d t, \quad-\infty<x<\infty .
$$

This integral is not elementary.

Figure 9.6. Standard normal cumulative distribution function

Figure 9.7. Normal cumulative distribution function $\mu=1, \sigma=0.7$

Example 9.29

A variable X has a normal distribution with a mean of 20 and a standard deviation of 3 . One score is randomly sampled.

1. What is the probability that it is above 15 ?
2. What is the probability that it is in the interval $[18,22]$?

Solution:

1. A variable X has a distribution $N(20,3)$. We must compute $P(X>15)$. Let F be the cumulative distribution function of X.

$$
P(X>15)=1-P(X \leq 15)=1-F(15) \approx 1-0.0478=0.9522
$$

We find $F(15)$ by calculating NORM.DIST(15;20;3;1) in Excel or NORMDIST(15;20;3;1) in OpenOffice Calc.
2. $P(18 \leq X \leq 22)=F(22)-F(18) \approx 0.7475-0.2525=0.4950$

Exercise 9.7

Suppose that herring lengths is normally distributed with the mean of 8 inches and the standard deviation of 1.5 inches. A fishing vessel can catch 10 tons of herrings daily. Estimate:

1. How many of the fish are longer than 11 inches?
2. How many would you expect to be shorter than 6 inches?
3. How many have a length between 8 and 10 inches?

Solution

1. $\approx 0.0228 \cdot 10 t=0.228 t$
2. $\approx 0.0912 \cdot 10 t=0.912 t$
3. $\approx 0.4088 \cdot 10 t=4.088 t$
