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7 INTEGRAL CALCULUS  

 
 

Thermodynamic is just one of many applications of integration. In fact, integrals are used in a 

wide variety of mechanical, electrotechnical and physical applications as in nautical 

navigation. In this chapter, the theory behind integration and some basic integration 

techniques, definitive and improper integrals. We can use integration to find the area under a 

curve, an arc length, volume of s solid revolution which has many practical applications in 

science, business, and maritime fields. 

 

Learning Outcomes: 

1. Calculate simple integrals of elementary functions 

2. Apply the rules for calculating definite integrals 

3. Use initial conditions to determine an integral 

4. Calculate the area of plane regions enclosed by curves 

5. Apply integration to find volumes of solids 

6. Apply integration to solve tasks from different maritime and business applications 
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7.1 Introduction to Indefinite Integrals 

 

DETAILED DESCRIPTION: 

The section contains introductory questions about the indefinite integrals. The relation 

between integrals and derivatives will be considered. The reverse procedure of differentiation 

of functions will be discussed. The definition of the indefinite integral will be formulated. The 

section contains examples with geometric interpretation of antiderivatives. The section ends 

with exercises and their solutions. 

For construction of graphs GeoGebra, DESMOS graphing calculator, MS Excel, or other tools 

can be applied. 

Recommended websites:  

MareMathics MareMathics – Innovative Approach in Mathematical Education for Maritime 

Students (pfst.hr)  

Useful website; 

Integral calculus: https://www.mathsisfunitscom/calculus/index.html 

Integrals: https://www.khanacademy.org/math/calculus-1/cs1-integrals 

Examples for integrals: 

https://www.wolframalpha.com/examples/mathematics/calculus-and-

analysis/integrals/ 

 

AIM: To learn the relationship between indefinite integrals and derivatives of elementary 

functions. To interpret the family of antiderivatives geometrically. 

Learning Outcomes: 

1. Perform the reverse procedure of differentiation for simple elementary functions 

2. Express the function with a given rate of change 

3. Construct the graph of the specified function 

 

Prior Knowledge: properties of elementary functions; graphs of elementary functions, algebra 

and trigonometry knowledge; rules of differentiation. 

Relationship to real maritime problems: Computations of indefinite integrals are used as a 

methodology in calculation of definite integrals.  Differentiation and integration are widely used 

to solve many engineering problems. Practical application of integrals is part of navigation 

theory; for instance, integrals are used in designing the Mercator map. Derivatives and integrals 

helped to improve understanding of the concept of Earth's curve: the distance ships had to 

https://maremathics.pfst.hr/
https://maremathics.pfst.hr/
https://www.mathsisfun.com/calculus/index.html
https://www.khanacademy.org/math/calculus-1/cs1-integrals
https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/integrals/
https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/integrals/
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travel around a curve to get to a specific location. Calculus has been used in shipbuilding for 

many years to determine both the curve of the ship's hull, as well as the area under the hull. 

 

Content 

1. Conceptions of the antiderivative and definition of the indefinite integral 

2. Geometric interpretation of the indefinite integral 

3. Uniqueness of antiderivatives 

4. Exercises 

5. Solutions 

 

7.1.1  Conceptions of the antiderivative and definition of the indefinite 
integral 

In the previous chapters we learned the differentiation of continuous functions. If function 

𝐹(𝑥) is given, its derivative is function  𝑓(𝑥)  

𝐹′(𝑥) = 𝑓(𝑥) 

or in the form of differentials 

𝑑(𝐹(𝑥))

𝑑𝑥
= 𝑓(𝑥). 

We are interested in the reverse procedure: what function have we differentiated to get the 

function 𝑓(𝑥)?  For instance, 𝑓(𝑥) = cos𝑥.  

According to the derivation formulas  

sin′𝑥 = cos𝑥 

Taking into account that the derivative of the constant number is zero 

𝐶′ = 0, 

we can determine several functions whose derivative is cosine function 

(sin𝑥 + 1)′ = cos𝑥;   (sin𝑥 − 1.5)′ = cos𝑥;  (sin𝑥 + 3)′ = cos𝑥  

We can conclude that all sinus functions plus an arbitrary constant number are the prime 

functions of the cosine. We determine the family of prime functions of function cos𝑥 for all real 

numbers 𝐶 

cos𝑥 = (sin𝑥 + 𝐶)′, 𝐶 ∈ 𝑅. 
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Definition. For any given function 𝑓(𝑥), function 𝐹(𝑥) is the prime function or antiderivative of 

𝑓(𝑥) if 𝐹′(𝑥) = 𝑓(𝑥). 

The process of finding antiderivatives is the reverse procedure of derivation. We call this 

process integration. 

 

Definition. The indefinite integral of a given function 𝑓(𝑥) is the set of all antiderivatives 𝐹(𝑥) +

𝐶 of the function 𝑓(𝑥) and it is denoted 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶, 

where  

the sign ʃ is called the integral symbol,  

𝑓(𝑥) is called the integrand,  

𝑥 is called the integration variable,  

𝐶 is called the integration constant. 

 

The above-mentioned example can be written 

∫ cos𝑥 𝑑𝑥 = sin𝑥 + 𝐶 

 

7.1.2 Geometric interpretation of the indefinite integral 

Knowing the geometric meaning of the derivative of a function, the given function𝑓(𝑥) 

expresses the rate of change of some prime function. Geometric solution of integration of 𝑓(𝑥) 

presents a set of graphs that completely cover the plane. For instance, representatives of the 

whole family of antiderivatives 𝐹(𝑥) = 𝑒𝑥 + 𝐶 are shown in figure 2.1. 

 

Figure 2.1 The family of antiderivatives 𝐹(𝑥) = 𝑒𝑥 + 𝐶 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

4  

 

We can get one definite function of the set of answers if some initial condition is given: that is, 

we have the coordinates of the point belonging to the curve. 

Example 2.1 Find function 𝜔(𝑥) whose rate of change is 𝜔′(𝑥) = cos𝑥 and the point (0,2) 

belongs to the graph of the function. 

Solution We will solve this problem in two steps.  

Step 1. Find antiderivatives of the function cos𝑥 

𝜔(𝑥) = ∫ cos𝑥 𝑑𝑥 = sin𝑥 + 𝐶 

Step 2. Calculate the definite value of constant C according to the value of the function 

at the point  (0,2) 

𝜔(0) = sin0 + 𝐶 = 𝐶 

𝜔(0) = 2;   𝐶 = 2 

Answer   𝜔(𝑥) = sin𝑥 + 2.  

The graph of this function belongs to the family of functions 𝜔(𝑥) = sin𝑥 + 𝐶. The 𝑦-intercept 

is the point (0, 2) where the graph of function 𝜔(𝑥) = sin𝑥 + 2  crosses the 𝑦-axis (see Figure 

2.2).  

 

Figure 2.2 The family of functions 𝜔(𝑥) = sin𝑥 + 𝐶 

 

An indefinite integral can be used to express the functional relations of physical processes. 

Example 2.2 A flare is ejected vertically upwards from the ground at 15 m/s. Find the height of 

the flare after 2.5 seconds. 

Comment: In the solution of this problem we suppose that it is not very hard to apply 

differentiation to find the function that gives the derivative −9.8𝑡 + 15 

Solution The velocity of a given object can be expressed in terms of time according to gravity 

𝑣(𝑡) = −9.8𝑡 + 𝐶 
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At the initial moment the velocity is 15 m/s (𝑡 = 0). We calculate 𝐶 = 15. 

The function of velocity in the given case is 

𝑣(𝑡) = −9.8𝑡 + 15 

To find the displacement 𝑠(𝑡) of the flare we integrate the function of velocity 

𝑠(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡 = ∫(−9.8𝑡 + 15)𝑑𝑡 = 

= −4.9𝑡2 + 15𝑡 + 𝐶 

At the initial position 𝑡 = 0, 𝑠 = 0 therefore 𝐶 = 0. We calculate the height of the flare 

after 2.5 seconds 

𝑠(2.5) = −4.92.52 + 15 ∙ 2.5 = 6.875  𝑚 

 

7.1.3  Uniqueness of antiderivatives 

A question arises when searching for the antiderivatives of the given function 𝑓(𝑥). How much 

these antiderivatives differ from one another? The following theorem states: 

Theorem. If functions 𝐹1(𝑥) and  𝐹2(𝑥) are two different antiderivatives of the function 𝑓(𝑥) 

they differ only by a constant number. 

It is given  [𝐹1(𝑥)]′ = 𝑓(𝑥)  and [𝐹2(𝑥)]′ = 𝑓(𝑥). Then the difference is 

[𝐹1(𝑥)]′ − [𝐹2(𝑥)]′ = 0  or [𝐹1(𝑥) − 𝐹2(𝑥)]′ = 0. 

We conclude that  𝐹1(𝑥) − 𝐹2(𝑥) = 𝐶. 

 

7.1.4 Exercises 

Using the list of elementary derivatives, find the antiderivatives 𝑓(𝑥) of the given functions 

𝑓′(𝑥) according to the initial conditions. Construct the graph of function (𝑥) . 

1. 𝑓′(𝑥) = 3𝑥2;    𝑓(0) = 1 

2. 𝑓′(𝑥) = 𝑒𝑥;     𝑓(1) = 𝑒     

3. 𝑓′(𝑥) =
1

2𝑥
;     𝑓(1) = 1.5 

4. 𝑓′(𝑥) = 2sin𝑥;    𝑓 (
𝜋

3
) = −0.75 

5. 𝑓′(𝑥) = 4𝑥 − 3;    𝑓(1) = 1 

6. Car starts from the origin and has acceleration (𝑡) = 2𝑡 − 5 𝑚
𝑠2⁄  . Find the function of 

velocity of the car! 
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7.1.5 Solutions 

Solution of exercise 1 We have the formula 

(𝑥𝑛)′ = 𝑛𝑥𝑛−1 

From the given  𝑓′(𝑥) = 3𝑥2 we can decide that 𝑛 = 3  and we find (𝑥3)′ = 3𝑥2. 

Using integral we get the set of answers 

∫ 𝑓′(𝑥)𝑑𝑥 = ∫ 3𝑥2𝑑𝑥 = 𝑥3 + 𝐶 

Applying initial condition 𝑥 = 0;   𝑦 = 1  

0 + 𝐶 = 1;      𝐶 = 1 

Answer 

𝑓(𝑥) = 𝑥3 + 1 

 

Figure 4.1 Function 𝑓(𝑥) = 𝑥3 + 1 

passing through the point (0; 1). 

 

Solution of exercise 2 We have the formula 

(𝑒𝑥)′ = 𝑒𝑥 

Using integral we get the set of answers 

∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶 

Applying initial condition 𝑥 = 1;   𝑦 = 𝑒  

𝑒1 + 𝐶 = 𝑒;      𝐶 = 0 

Answer 

𝑓(𝑥) = 𝑒𝑥 
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Figure 4.2 Function 𝑓(𝑥) = 𝑒𝑥 passing 

through the point (1; e). 

 

Solution of exercise 3 We have the formulas 

(ln𝑥)′ =
1

𝑥
  and  (𝑎𝑓(𝑥))′ = 𝑎(𝑓(𝑥))′,  where a is a constant. 

Then 

(
1

2
ln𝑥) ′ =

1

2
(ln𝑥)′ =

1

2
∙

1

𝑥
 

Using integral  

∫
1

2𝑥
𝑑𝑥 =

ln𝑥

2
+ 𝐶 

Applying initial condition 𝑥 = 1;   𝑦 = 1.5  

ln1

2
+ 𝐶 = 0 + 𝐶 = 1.5;      𝐶 = 1.5 

 

Answer 

𝑓(𝑥) =
ln𝑥

2
+ 1.5 
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Figure 4.3 Function 𝑓(𝑥) =
ln𝑥

2
+ 1.5 passing 

through the point (1; 1.5). 

 

Solution of exercise 4 We have the formula 

(cos𝑥)′ = −sin𝑥 

Using integral we get 

∫ 2sin𝑥 𝑑𝑥 = 2 ∫ sin𝑥 𝑑𝑥 = − 2cos𝑥 + 𝐶 

Applying initial condition 𝑥 =
𝜋

3
;   𝑦 = −0.75  

−2cos
𝜋

3
+ 𝐶 = −2 ∙

1

2
+ 𝐶 = −0.75;      𝐶 = 0.25 

Answer 

𝑓(𝑥) = −2cos𝑥 + 0.25 

 

Figure 4.4 Function 𝑓(𝑥) = −2cos𝑥 + 0.25  

passing through the point (
𝜋

3
, −0.75). 
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Solution of exercise 5 We know that 

(𝑥2)′ = 2𝑥;     (3𝑥)′ = 3 

and 

(2𝑥2 − 3𝑥)′ = 2(𝑥2)′ − (3𝑥)′ = 4𝑥 − 3 

 

Using integral we get 

∫(4𝑥 − 3)𝑑𝑥 = 2𝑥2 − 3𝑥 + 𝐶 

Applying initial condition 𝑥 = 1;   𝑦 = 1  

2 − 3 + 𝐶 = 1;      𝐶 = 2 

Answer 

𝑓(𝑥) = 2𝑥2 − 3𝑥 + 2 

 

Figure 4.5 Function 𝑓(𝑥) = 2𝑥2 − 3𝑥 +

2 passing through the point (1; 1). 

 

Solution of exercise  6:  Car starts from the origin and has the acceleration (𝑡) = 2𝑡 − 5 𝑚
𝑠2⁄   

Find the function of velocity of the car! 

Solution 

Velocity can be determined 

𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡 
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Applying the formula of differentiation of power function, we can detect that expression 

2𝑡 − 5 can be derived from the function 𝑡2, and 5 from 5𝑡. Therefore, the antiderivative 

should be  

𝐹(𝑥) = 𝑡2 − 5𝑡 

Generally,  𝑣(𝑡) =  𝑡2 − 5𝑡 + 𝐶. 

At the start 𝑡 = 0, 𝑣(0) = 0, therefore 𝐶 = 0. Therefore, the function of velocity is  

𝑣(𝑡) =  𝑡2 − 5𝑡 

This equation helps to detect the velocity of the car after a time moment, for instance, after 

10 seconds 

𝑣(10) =  100 − 50 = 50 𝑚/𝑠 
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7.2 Basic Rules of Integration 

 

DETAILED DESCRIPTION: 

This section introduces basic formulas of integration of elementary functions and the main properties of indefinite 

integrals. The section explains how to derive integration formulas from well-known differentiation rules. Several 

examples with explanations are discussed. Exercises for individual learning of integration are presented. At the 

end of the section there is an example on how to check the correctness of the solution of an integral. 

AIM: To learn basic formulas and properties of integrals; to introduce methods of integration 

1.  

Learning Outcomes 

7. Learning the basic integration formulas 

8. Application of the properties of indefinite integrals 

9. Computing simple integrals of elementary functions 

10. Transformation of integrands if necessary 

 

Prior Knowledge: rules of differentiation; meaning of the term antiderivative; algebraic and 

trigonometric formulas to transform the integrands. 

Relationship to real maritime problems: Computations of indefinite integrals are used as a 

methodology in calculation of definite integrals.  Differentiation and integration are widely used 

to solve many engineering problems. Practical application of integrals is part of navigation 

theory; for instance, integrals are used in designing the Mercator map. Derivatives and integrals 

helped to improve understanding of the concept of Earth's curve: the distance ships had to 

travel around a curve to get to a specific location. Calculus has been used in shipbuilding for 

many years to determine both the curve of the ship's hull, as well as the area under the hull. 

Content 

1. Integration formulas 

2. List of basic integration formulas 

3. Properties of indefinite integrals 

4. Alteration of the integrand 

5. Exercises 

6. Solutions 

7. Additional note 

 

7.2.1 Integration formulas 

Understanding that integration is the reverse procedure of differentiation, we will write basic 

formulas of integrals. Any formula  
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∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 

can be proved by differentiation – derivative of the function on the right side of the formula 

must be equal with the integrand: 

𝑑(𝐹(𝑥) + 𝐶)

𝑑𝑥
= 𝑓(𝑥) 

For instance, let us prove the formula 

∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛 + 1
+ 𝐶;     𝑛 ≠ −1 

The derivative of the right side of the formula 

(
𝑥𝑛+1

𝑛 + 1
+ 𝐶) ′ = (

𝑥𝑛+1

𝑛 + 1
) ′ + 𝐶′ =

1

𝑛 + 1
∙ (𝑛 + 1)𝑥𝑛 + 0 = 𝑥𝑛 

 The special case 𝑛 = −1 gives another formula 

∫ 𝑥−1𝑑𝑥 = ∫
𝑑𝑥

𝑥
=  ln𝑥 + 𝐶 

 

7.2.2 List of basic integration formulas 

The list of basic differentiation formulas covers all elementary functions. Therefore, the basic 

list of integration formulas contain the antiderivatives that are elementary functions – power 

functions, exponent functions, logarithmic functions, trigonometric functions, and cyclometric 

functions: 

1. ∫ 𝑑𝑥 = 𝑥 + 𝐶 

2. ∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛 + 1
+ 𝐶;     𝑛 ≠ −1 

3. ∫ 𝑥−1𝑑𝑥 = ∫
𝑑𝑥

𝑥
=  ln|𝑥| + 𝐶 

4. ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶 

5. ∫ 𝑎𝑥𝑑𝑥 =
𝑎𝑥

 ln𝑎
+ 𝐶 

6. ∫  sin𝑥 𝑑𝑥 = − cos𝑥 + 𝐶 

7. ∫  cos𝑥 𝑑𝑥 =  sin𝑥 + 𝐶 
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8. ∫
𝑑𝑥

 sin2𝑥
= − cot𝑥 + 𝐶 

9. ∫
𝑑𝑥

 cos2𝑥
=  tan𝑥 + 𝐶 

10. ∫
𝑑𝑥

1 + 𝑥2
=  arc tan𝑥 + 𝐶 

11. ∫
𝑑𝑥

√1 − 𝑥2
=  arc sin𝑥 + 𝐶 

Usually this list is been supplemented by additional formulas that relate to hyperbolic functions, 

cyclometric or inverse trigonometric functions, and similar-looking integrals: 

12. ∫  sinh𝑥 𝑑𝑥 =  cosh𝑥 + 𝐶 

13. ∫  cosh𝑥 𝑑𝑥 =  sinh𝑥 + 𝐶 

14. ∫
𝑑𝑥

 sinh2𝑥
= − coth𝑥 + 𝐶 

15. ∫
𝑑𝑥

 cosh2𝑥
=  tanh𝑥 + 𝐶 

16. ∫
𝑑𝑥

𝑎2 + 𝑥2
=

1

𝑎
 arc tan

𝑥

𝑎
+ 𝐶 

17. ∫
𝑑𝑥

√𝑎2 − 𝑥2
=  arc sin

𝑥

𝑎
+ 𝐶 

18. ∫
𝑑𝑥

𝑎2 − 𝑥2
=

1

2𝑎
 ln |

𝑎 + 𝑥

𝑎 − 𝑥
| + 𝐶 

19. ∫
𝑑𝑥

√𝑥2 ± 𝑎2
=  ln |𝑥 + √𝑥2 ± 𝑎2| + 𝐶 

The basic formulas work for any of the mentioned functions whenever the argument of the 

function is 𝑥;   𝑡;   𝜔;   𝑠, or some other. For instance, the following formulas are true, like 

formula 6: 

∫ sin𝑡 𝑑𝑡 = − cos𝑡 + 𝐶   or   ∫ sin𝜔 𝑑𝜔 = − cos𝜔 + 𝐶 

 

7.2.3 Properties of indefinite integrals 

Let us look at the most common properties of integrals.  

Property 1. The derivative of integral equals to the integrand 
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(∫ 𝑓(𝑥)𝑑𝑥) ′ = 𝑓(𝑥) 

Property 2. The integral of the sum of two function is equal to the sum of two integrals of given 

functions 

∫(𝑓(𝑥) + 𝑔(𝑥))𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥 

Property 3. For any arbitrary constant a 

∫ 𝑎𝑓(𝑥)𝑑𝑥 = 𝑎 ∫ 𝑓(𝑥)𝑑𝑥 

Property 4. The integral of the differential of a function is equal to that function plus an arbitrary 

constant 

∫ 𝑑(𝐹(𝑥)) = 𝐹(𝑥) + 𝐶 

The first property derives from the definition of the indefinite integral. Other mentioned 

properties can be proved based on the first property and by the rules of differentials. 

 

Example 3.1  Compute the integral 

∫( sin𝑥 + 𝑒𝑥)𝑑𝑥 

Solution 

Combining second property and formulas 4 and 6 we get 

∫( sin𝑥 + 𝑒𝑥)𝑑𝑥 = ∫  sin𝑥 𝑑𝑥 + ∫ 𝑒𝑥𝑑𝑥 = 

= − cos𝑥 + 𝑒𝑥 + 𝐶 

Example 3.2  Compute the integral 

∫
5

9 + 𝑥2
𝑑𝑥 

Solution 

Combining third property and formula 16 we get 

∫
5

9 + 𝑥2
𝑑𝑥 = 5 ∫

𝑑𝑥

9 + 𝑥2
= 

= 5 ∙
1

3
 arc tan

𝑥

3
+ 𝐶 

Example 3.3  Compute the integral 
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∫ (4𝑥3 − 2√𝑥 +
3 ln7

𝑥
) 𝑑𝑥 

Solution 

∫ (4𝑥3 − 2√𝑥 +
3 ln7

𝑥
) 𝑑𝑥 = |

by property 2 
and property 3

| = 

= 4 ∫ 𝑥3𝑑𝑥 − 2 ∫ 𝑥
1
2𝑑𝑥 + 3 ln7 ∫

𝑑𝑥

𝑥
= 

= |applying formulas 2 and 3| = 

= 4
𝑥4

4
− 2

𝑥
3
2

3
2

+ 3 ln7 ∙  ln|𝑥| + 𝐶 = 

= 𝑥4 −
4

3
𝑥√𝑥 + 3 ln7 ∙  ln|𝑥| + 𝐶 

 

7.2.4 Alteration of the integrand 

In most cases the integrand function is quite complicated, therefore special techniques of 

integration are needed. However, there are functions that we can alter to use basic formulas. 

Let us investigate some examples where we will use algebra and trigonometry formulas. 

Example 4.1  Compute the integral 

∫
𝑑𝑥

√81 − 49𝑥2
 

Solution 

We change the expression under the square root to apply basic integration formula 17 

∫
𝑑𝑥

√81 − 49𝑥2
= ∫

𝑑𝑥

√49 (
81
49 − 𝑥2)

=
1

7
∫

𝑑𝑥

√81
49 − 𝑥2

=
1

7
 arc sin

7𝑥

9
+ 𝐶 

 

Example 4.2  Compute the integral 

∫(2 − 𝑥)2𝑑𝑥 

Solution 

We will expand the expression, apply the properties 2 and 3, and basic formula 1 and 

basic formula 2 

∫(2 − 𝑥)2𝑑𝑥 = ∫(4 − 4𝑥 + 𝑥2)𝑑𝑥 = 4𝑥 − 2𝑥2 +
𝑥3

3
+ 𝐶 
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Example 4.3 Compute the integral 

∫
𝑥2 − 5𝑥 + 6

𝑥 − 2
𝑑𝑥 

Solution 

We factorise the numerator and simplify the integrand. We apply the same properties 

and formulas as in the previous example 

∫
𝑥2 − 5𝑥 + 6

𝑥 − 2
𝑑𝑥 = ∫

(𝑥 − 2)(𝑥 − 3)

𝑥 − 2
𝑑𝑥 = ∫(𝑥 − 3)𝑑𝑥 =

𝑥2

2
− 3𝑥 + 𝐶 

 

Example 4.4  Compute the integral 

∫
𝑥2 ∙ √𝑥3

𝑥−
2
3 ∙ √𝑥

𝑑𝑥 

Solution 

Here we use the property of products of power and use the formula 2 

∫
𝑥2 ∙ √𝑥

3

𝑥−
2
3 ∙ √𝑥

𝑑𝑥 = ∫ 𝑥2+
1
3+

2
3−

1
2𝑑𝑥 = ∫ 𝑥

5
2𝑑𝑥 =

2

7
𝑥

7
2 + 𝐶 =

2

7
𝑥3 ∙ √𝑥 + 𝐶 

 

Example 4.5  Compute the integral 

∫ cos2
𝑥

2
𝑑𝑥 

Solution  

Apply the trigonometric formula of the double angle 

∫ cos2
𝑥

2
𝑑𝑥 = ∫

1 +  cos𝑥

2
𝑑𝑥 = 

= |
by properties 2 and 3

by formulas 1 and 2
| = 

=
1

2
𝑥 +

1

2
 sin𝑥 + 𝐶 

 

For more complex integrals, there are used special integration techniques that we will discuss 

in the following sections. 
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7.2.5 Exercises 

Compute the following integrals using basic formulas and algebraic transformations if needed. 

1. ∫ (6𝑥3 +
2

5𝑥3
− 12) 𝑑𝑥 

2. ∫ (
1

2√𝑥
− 𝑥0.5 +

4

𝑥
) 𝑑𝑥 

3. ∫ (3 sin𝑥 +
2

 sin2𝑥
) 𝑑𝑥 

4. ∫ (12𝑥 −
1

 cos2𝑥
+ 𝑒𝑥) 𝑑𝑥 

5. ∫
16

𝑥2 + 25
𝑑𝑥 

6. ∫ (sinh𝑡 −
1

√𝑡2 − 64
) 𝑑𝑡 

7. ∫ √
𝑥4 ∙ √𝑥3

𝑥−
1
2

3

𝑑𝑥 

8. ∫
𝑥2 − 3𝑥 + 4

𝑥 + 1
𝑑𝑥 

 

7.2.6 Solutions 

1. ∫ (6𝑥3 +
2

5𝑥3 − 12) 𝑑𝑥 = 6 ∫ 𝑥3𝑑𝑥 +
2

5
∫ 𝑥−3𝑑𝑥 − 12 ∫ 𝑑𝑥= 

=
6𝑥4

4
−

2

5
∙

𝑥−2

2
− 12𝑥 + 𝐶 = 1.5𝑥4 −

1

5𝑥2
− 12𝑥 + 𝐶 

 

2. ∫ (
1

2√𝑥
− 𝑥0.5 +

4

𝑥
) 𝑑𝑥 =

1

2
∫ 𝑥−0.5𝑑𝑥 − ∫ 𝑥0.5𝑑𝑥 + 4 ∫

𝑑𝑥

𝑥
= 

=
1

2

𝑥0.5

0.5
−

𝑥1.5

1.5
+ 4 ln|𝑥| + 𝐶 = √𝑥 −

2

3
𝑥√𝑥 + 4 ln|𝑥| + 𝐶 

 

3. ∫ (3 sin𝑥 +
2

 sin2𝑥
) 𝑑𝑥 = 3 ∫  sin𝑥 𝑑𝑥 + 2 ∫

𝑑𝑥

 sin2𝑥
= −3 cos𝑥 − 2 cot𝑥 + 𝐶 

 

4. ∫ (12𝑥 −
1

 cos2𝑥
+ 𝑒𝑥) 𝑑𝑥 = ∫ 12𝑥𝑑𝑥 − ∫

𝑑𝑥

 cos2𝑥
+ ∫ 𝑒𝑥𝑑𝑥 = 
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=
12𝑥

 ln12
−  tan𝑥 + 𝑒𝑥 + 𝐶 

 

5. ∫
16

𝑥2 + 25
𝑑𝑥 = 16 ∫

𝑑𝑥

𝑥2 + 52
= 16 ∙

1

5
 arc tan

𝑥

5
+ 𝐶 

 

6. ∫ (sinh𝑡 −
1

√𝑡2 − 64
) 𝑑𝑡 = ∫  sinh𝑡 𝑑𝑡 − ∫

𝑑𝑡

√𝑡2 − 64
= 

=  cosℎ𝑡 −  ln |𝑡 + √𝑡2 − 64| + 𝐶 

 

7. ∫ √
𝑥4 ∙ √𝑥3

𝑥−
1
2

3

𝑑𝑥 = ∫ (𝑥4+
3
2+

1
2)

1
3

𝑑𝑥 = ∫ 𝑥6∙ 
1
3𝑑𝑥 = ∫ 𝑥2𝑑𝑥 =

𝑥3

3
+ 𝐶 

 

8. ∫
𝑥2 + 5𝑥 + 4

𝑥 + 1
𝑑𝑥 = ∫

(𝑥 + 1)(𝑥 + 4)

𝑥 + 1
𝑑𝑥 = ∫(𝑥 + 4) 𝑑𝑥 = 

= ∫ 𝑥 𝑑𝑥 + 4 ∫ 𝑑𝑥 =
𝑥2

2
+ 4𝑥 + 𝐶 

 

7.2.7 Additional note 

Every integration result can be checked by differentiation of the antiderivative. For instance, 

let us check the result of example 3.2 (see chapter 7.2.3) by applying the chain rule of 

differentiation 

(5 ∙
1

3
 arc tan

𝑥

3
+ 𝐶) ′ =

5

3
( arc tan

𝑥

3
) ′ + 𝐶′ = 

=
5

3
∙

1

1 + (
𝑥
3

)
2 ∙ (

𝑥

3
) ′ =

5

3
∙

1

1 +
𝑥2

9

∙
1

3
= 

=
5

3
∙

9

9 + 𝑥2
∙

1

3
=

5

9 + 𝑥2
 

Thus, we get the same function as the integrand. The integral is solved correctly. 
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7.3 Integration Techniques 

7.3.1 Integration Techniques: Substitution 

 

DETAILED DESCRIPTION: 

In this chapter we will investigate the methods of integration of composite functions. The Chain 

Rule of derivation will be presented as an argument for integration of composite functions. The 

reverse process will be presented that introduces the formula of the Reverse Chain Rule. The 

method of substitution can help to simplify the notation of an integral. It will be called u-

substitution. Several examples are presented in the chapter. There are integrals of composite 

functions given where the inner function is either linear or non-linear. 

AIM: To master the skills of substitution to solve the integrals of composite functions. 

Learning Outcomes 

1. Students will acquire the method of changing the differential to compute integrals 

2. Students will be able to carry out integration by making substitution 

3. Students will recognize that the method of substitution is useful with integrals of 

composite functions 

 

Prior Knowledge: rules of differentiation; basic rules of integration; algebraic formulas; 

knowledge of elementary mathematics. 

Relationship to real maritime problems: Computations of indefinite integrals are used as a 

methodology in calculation of definite integrals.  Differentiation and integration are widely used 

to solve many engineering problems. Practical application of integrals is part of navigation 

theory; for instance, integrals are used in designing the Mercator map. Derivatives and integrals 

helped to improve understanding of the concept of Earth's curve: the distance ships had to 

travel around a curve to get to a specific location. Calculus has been used in shipbuilding for 

many years to determine both the curve of the ship's hull, as well as the area under the hull. 

Content 

1. Integration of composite functions 

2. Reverse Chain Rule 

3. Application of Reverse Chain Rule 

4. The change of differential 

5. Method of substitution 

6. Examples 

7. Exercises 
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7.3.1.1 Integration of composite functions 

In the previous sections we solved integrals where the integrands are elementary simple 

functions of variable 𝑥. How we can compute the integral if the integrand is a composite 

function?  

A composite function is composed of two functions 𝑓(𝑥) and 𝑔(𝑥) where one of the given 

functions is the argument of another function 𝑓(𝑔(𝑥)).  

Function 𝑔(𝑥) is the inner function and function 𝑓(𝑥) is the outer function. 

Examples of composite functions 

1) sin3𝑥;   2) cos(𝑥2);   3)  𝑒tan𝑥;    4) (6𝑥 + 7)13 

There are given linear inner functions  3𝑥  and 6𝑥 + 7, and non-linear inner functions 𝑥2 and 

tan𝑥. Outer functions are sin𝑥;  cos𝑥; 𝑒𝑥; 𝑥13.  

 

7.3.1.2 Reverse Chain Rule 

Let us remember the Chain Rule for differentiation of a composite function 

(𝑓(𝑔(𝑥)))′ = 𝑓′(𝑔(𝑥)) ∙ 𝑔′(𝑥) 

Suppose that we are trying to detect the function whose derivative is 𝑓′(𝑔(𝑥)) ∙ 𝑔′(𝑥). We will 

perform the reverse procedure of differentiation to solve this problem. For instance, can we 

determine the function whose derivative is cos(𝑥2) ∙ 2𝑥? 

Here the composite function is cos(𝑥2) whose argument (inner function) is 𝑥2. The derivative 

of 𝑥2 is 

(𝑥2)′ = 2𝑥. 

Let us check now 

(sin(𝑥2))′ = cos(𝑥2) ∙ (𝑥2)′ = cos(𝑥2) ∙ 2𝑥 

The performed procedure can be recorded in the notation of integral 

∫ cos(𝑥2) ∙ 2𝑥𝑑𝑥 = sin(𝑥2) + 𝐶 

Let us simplify the notation by substituting the function 

                                                        let 𝑢 = 𝑥2  then  𝑑𝑢 = 𝑑(𝑥2) = (𝑥2)′𝑑𝑥 = 2𝑥𝑑𝑥 

∫ cos𝑢 𝑑𝑢 = sin𝑢 + 𝐶, where 𝑢 = 𝑥2. 

Generalising the case, we write the formula of Reverse Chain Rule: 

∫ 𝒇′(𝒈(𝒙)) ∙ 𝒈′(𝒙)𝒅𝒙 = 𝒇(𝒈(𝒙)) + 𝑪 
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7.3.1.3 Application of Reverse Chain Rule 

Based on the definition of the differential of the function 𝑑𝑢 = 𝑢′𝑑𝑥 for function 𝑢 = 𝑢(𝑥) we 

can simplify the Reverse Chain Rule 

∫ 𝒇(𝒖)𝒅𝒖 = 𝑭(𝒖) + 𝑪 

Therefore, the basic list of integrals given in the section “Basic Rules of Integration” can also be 

applicable for composite functions. For instance, formulas 

∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛+1

𝑛 + 1
+ 𝐶,    𝑛 ≠ −1 

∫
𝑑𝑥

cos2𝑥
= tan𝑥 + 𝐶 

can be modified for composite functions whose inner function is the function u 

∫ 𝑢𝑛𝑑𝑢 =
𝑢𝑛+1

𝑛 + 1
+ 𝐶,    𝑛 ≠ −1 

∫
𝑑𝑢

cos2𝑢
= tan𝑢 + 𝐶 

 

Example 3.1 Integrate 

∫ cos5𝑥𝑑(cos𝑥) 

Solution 

Let us notice  

∫ 𝑢5𝑑𝑢 =
𝑢6

6
+ 𝐶 

We can apply this formula for the given integral 

∫ cos5𝑥𝑑(cos𝑥) =
cos6𝑥

6
+ 𝐶 

 

Example 3.2 Integrate 

∫(8 − 11𝑥)5𝑑(8 − 11𝑥) 

Solution 

Notice that we can apply the same formula as in the example 3.1. 

∫(8 − 11𝑥)5𝑑(8 − 11𝑥) =
(8 − 11𝑥)6

6
+ 𝐶 
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Example 3.3 Integrate 

∫
𝑑(4𝑥)

cos2(4𝑥)
 

Solution 

∫
𝑑(4𝑥)

cos2(4𝑥
)

= tan(4𝑥) + 𝐶 

 

7.3.1.4 The change of differential 

The examples in the previous chapter demonstrate the integration method where the 

expression under the integral has the differential of a function as a variable of integration. We 

can create such differentials in simple cases. Especially if the argument of the composite 

function is linear 

∫ 𝑓(𝑎𝑥 + 𝑏)𝑑𝑥 

Let us compute the differential of a linear function 

𝑑(𝑎𝑥 + 𝑏) = (𝑎𝑥 + 𝑏)′𝑑𝑥 = 𝑎𝑑𝑥 

Calculation shows that differentials 𝑑𝑥 and 𝑑(𝑎𝑥 + 𝑏) differ only by a constant number 𝑎. 

Therefore, we can easy change the integral 

∫ 𝒇(𝒂𝒙 + 𝒃)𝒅𝒙 =
𝟏

𝒂
∫ 𝒇(𝒂𝒙 + 𝒃)𝒅(𝒂𝒙 + 𝒃) =

𝟏

𝒂
𝑭(𝒂𝒙 + 𝒃) + 𝑪 

 

Example 4.1 

∫ sin7𝑥𝑑𝑥 =
1

7
∫ sin7𝑥 𝑑(7𝑥) = −

1

7
cos7𝑥 + 𝐶 

 

Example 4.2 

∫
𝑑𝑥

√2𝑥 + 1
=

1

2
∫

𝑑(2𝑥 + 1)

√2𝑥 + 1
= √2𝑥 + 1 + 𝐶 

 

Example 4.3 

∫ sin5𝑥 ∙ cos𝑥 𝑑𝑥 = ∫ sin5𝑥 𝑑(sin𝑥) =
sin6𝑥

6
+ 𝐶 
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7.3.1.5 Method of substitution 

In a more general case, we can try to simplify the integral of a composite function by 

substitution if we can construct the derivative of the inner function 

∫ 𝒇(𝒈(𝒙)) ∙ 𝒈′(𝒙)𝒅𝒙 = ∫ 𝒇(𝒈(𝒙)) 𝒅(𝒈(𝒙)) 

For example, if the given integral is the following 

∫ 𝑥3(0.5𝑥4 + 21)
10

𝑑𝑥 

we note the connection between the inner function 0.5𝑥4 + 21  and the multiplier 𝑥3. The 

multiplier is part of derivative of the inner function 

(0.5𝑥4 + 21  )′ = 2𝑥3 

Therefore, we can change the integral substituting the inner function by u 

∫ 𝑥3(0.5𝑥4 + 21)
10

𝑑𝑥 = 

= |let  𝑢 = 0.5𝑥4 + 21
then 𝑑𝑢 = 2𝑥3𝑑𝑥

| = 

=
1

2
∫ 2𝑥3(0.5𝑥4 + 21)10𝑑𝑥 = 

=
1

2
∫ 𝑢10𝑑𝑢 =

1

2
∙

𝑢11

11
+ 𝐶 = 

=
(0.5𝑥4 + 21)11

22
+ 𝐶 

 

In a more general case we can integrate the composite function 𝑓(𝑢) with respect to the 

function         𝑢 = 𝑢(𝑥) if the integrand contains the derivative of the argument function 

∫ 𝑓(𝑢)𝑢′𝑑𝑥 = ∫ 𝑓(𝑢)𝑑𝑢 

We can call this method of substitution u-substitution. 

 

 

7.3.1.6 Examples 
 

Example 6.1 Compute 

∫
𝑑𝑥

5𝑥 + 2
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Solution 

∫
𝑑𝑥

5𝑥 + 2
= |

let    𝑢 = 5𝑥 + 2                   
then  𝑑𝑢 = (5𝑥 + 2)′𝑑𝑥 = 5𝑑𝑥

| = 

=
1

5
∫

𝑑𝑢

𝑢
=

1

5
∙ ln|𝑢| + 𝐶 =

1

5
∙ ln|5𝑥 + 2| + 𝐶 

 

Example 6.2 Compute 

∫
𝑑𝑥

1 + 16𝑥2
 

Solution 

∫
𝑑𝑥

1 + 16𝑥2
= |

let  𝑢 = 4𝑥
then 𝑑𝑢 = 4𝑑𝑥

| =
1

4
∫

𝑑𝑢

1 + 𝑢2
= 

=
1

4
arctan(4𝑥) + 𝐶 

 

Example 6.3 Compute 

∫
𝑒tan𝑥

cos2𝑥
𝑑𝑥 

Solution 

∫
𝑒tan𝑥

cos2𝑥
𝑑𝑥 = |

let 𝑢 = tan𝑥

then 𝑑𝑢 =
1

cos2𝑥
𝑑𝑥

| = 

= ∫ 𝑒𝑢𝑑𝑢 = 𝑒𝑢 + 𝐶 = 𝑒tan𝑥 + 𝐶 

 

Example 6.4 Compute 

∫
𝑡𝑑𝑡

(𝑡 + 1)3
 

Solution 

∫
𝑡𝑑𝑡

(𝑡 + 1)3
= |

let 𝑢 = 𝑡 + 1;   𝑡 = 𝑢 − 1
then 𝑑𝑢 = 𝑑𝑡                    

| = 

= ∫
𝑢 − 1

𝑢3
𝑑𝑢 = ∫ 𝑢−2𝑑𝑢 − ∫ 𝑢−3𝑑𝑢 = 

=
𝑢−1

−1
−

𝑢−2

−2
+ 𝐶 = −

1

𝑡 + 1
+

2

(𝑡 + 1)2
+ 𝐶 
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7.3.1.7 Exercises 

Find the integrals by suitable u-substitution 

𝟏.  ∫ cos(8𝜋𝑥)𝑑𝑥 

𝟐.  ∫
𝑑𝑥

(3 − 2𝑥)4
 

𝟑.  ∫
𝑑𝑥

√1 − (𝑥 + 6)2
 

𝟒.  ∫
ln5𝑥

𝑥
𝑑𝑥 

𝟓.  ∫ √𝑥 (3 + 8𝑥
3
2) 𝑑𝑥 

𝟔.  ∫ 𝑒𝜃√12 + 𝑒𝜃𝑑𝜃 

𝟕.  ∫ cot 𝑡 𝑑𝑡 

𝟖.  ∫
arctan7𝑥

1 + 𝑥2
𝑑𝑥 

 

 

7.3.1.8 Solutions 

𝟏.  ∫ cos(8𝜋𝑥)𝑑𝑥 

Solution 

                               ∫ cos(8𝜋𝑥)𝑑𝑥 = | let 𝑢 = 8𝜋𝑥  
     𝑑𝑢 = 8𝜋𝑑𝑥

| = 

=
1

8𝜋
∫ cos𝑢 𝑑𝑢 = 

  =
1

8𝜋
sin𝑢 + 𝐶 =

1

8𝜋
sin(8𝜋𝑥) + 𝐶 

 

𝟐.  ∫
𝑑𝑥

(3 − 2𝑥)4
 

Solution 

                                   ∫
𝑑𝑥

(3 − 2𝑥)4
= |

let 𝑢 = 3 − 2𝑥  
     𝑑𝑢 = −2𝑑𝑥

| = 
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= −
1

2
∫

𝑑𝑢

𝑢4
= 

= −
1

2
∙

𝑢−3

−3
+ 𝐶 =

1

6(3 − 2𝑥)3
+ 𝐶 

 

𝟑.  ∫
𝑑𝑥

√1 − (𝑥 + 6)2
 

Solution 

                          ∫
𝑑𝑥

√1 − (𝑥 + 6)2
= |

let 𝑢 = 𝑥 + 6  
     𝑑𝑢 = 𝑑𝑥

| = 

= ∫
𝑑𝑢

√1 − 𝑢2
= 

= arcsin𝑢 + 𝐶 = arcsin(𝑥 + 6) + 𝐶 

 

 

𝟒.  ∫
ln5𝑥

𝑥
𝑑𝑥 

Solution 

                                        ∫
ln5𝑥

𝑥
𝑑𝑥 = |

let 𝑢 = ln𝑥  

     𝑑𝑢 =
1

𝑥
𝑑𝑥

| = 

= ∫ 𝑢5𝑑𝑢 = 

=
𝑢6

6
+ 𝐶 =

ln6𝑥

6
+ 𝐶 

 

𝟓.  ∫ √𝑥 (3 + 8𝑥
3
2) 𝑑𝑥 

Solution 

                      ∫ √𝑥 (3 + 8𝑥
3
2) 𝑑𝑥 = |let 𝑢 = 3 + 8𝑥

3
2  

     𝑑𝑢 = 12√𝑥𝑑𝑥
| = 

=
1

12
∫ 𝑢 𝑑𝑢 = 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

27  

=
1

12

𝑢2

2
+ 𝐶 =

(3 + 8𝑥
3
2)

2

24
+ 𝐶 

 

 

𝟔.  ∫ 𝑒𝜃√12 + 𝑒𝜃𝑑𝜃 

Solution 

                         ∫ 𝑒𝜃√12 + 𝑒𝜃𝑑𝜃 = |let 𝑢 = 12 + 𝑒𝜃   
     𝑑𝑢 = 𝑒𝜃𝑑𝜃

| = 

= ∫ √𝑢 𝑑𝑢 = 

=
𝑢

3
2

3
2

+ 𝐶 =
2

3
√12 + 𝑒𝜃

3

+ 𝐶 

 

𝟕.  ∫ cot 𝑡 𝑑𝑡 

Solution 

                                           ∫ cot 𝑡 𝑑𝑡 = ∫
cos𝑡

sin𝑡
𝑑𝑡 = 

= |
let 𝑢 = sin𝑡  

     𝑑𝑢 = cos𝑡 𝑑𝑡
| = 

= ∫
𝑑𝑢

𝑢
= ln|𝑢| + 𝐶 = ln|sin𝑡| + 𝐶 

 

𝟖.  ∫
arctan7𝑥

1 + 𝑥2
𝑑𝑥 

Solution 

                               ∫
arctan7𝑥

1 + 𝑥2
𝑑𝑥 = |

let 𝑢 = arctan𝑥  

     𝑑𝑢 =
𝑑𝑥

1 + 𝑥2

| = 

= ∫ 𝑢7𝑑𝑢 = 

=
𝑢8

8
+ 𝐶 =

arctan8𝑥

8
+ 𝐶 
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7.3.2 Integration Techniques: Integration by Parts 

 

DETAILED DESCRIPTION: 

The section starts by recalling the Product rule for differentiation of multiplication of two 

functions. The integration of this formula produces the method of integration by parts. The 

application of this method is useful if the integrand is a product of two functions of special type. 

The most popular cases are discussed and are complemented by examples. 

AIM: to learn the method of integration by parts and to recognize the types of integrals for 

which the method is useful.  

Learning Outcomes 

1. Students recognize the integrals for that the integration by parts is useful. 

2. Students can apply the method of partial integration to compute the integrals of 

different type. 

 

Prior Knowledge: rules of differentiation; rules for integration; the method of substitution; 

algebra and trigonometry formulas. 

Relationship to real maritime problems: a well-known application of the method of integration 

by parts is the calculation of Fourier coefficients of the Fourier series. Fourier series have broad 

applications in many disciplines. They are used to describe periodical physical phenomena, for 

instance, in signal processing, to detect and correct sources of vibration in mechanical devices.  

Content 

1. Formula for integration by parts 

2. Special cases 

3. Examples 

4. Repeated application of the method 

5. Exercises 

6. Solutions 

 

7.3.2.1 Formula for integration by parts 

We will discuss the method that is often useful to compute the integral if it’s integrand is a 

product of two functions.  

Let us have two differentiable functions 𝑢 = 𝑢(𝑥) and 𝑣 = 𝑣(𝑥). We will calculate the 

differential of the product of these functions according to the Product Rule  

𝒅(𝒖𝒗) = 𝒖𝒅𝒗 + 𝒗𝒅𝒖 
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By integrating both sides of this equation, we obtain 

∫ 𝑑(𝑢𝑣) = ∫ 𝑢𝑑𝑣 + ∫ 𝑣𝑑𝑢. 

By transposing terms and applying the property of integrals ∫ 𝒅(𝒖𝒗) = 𝒖𝒗 + 𝑪, we get 

∫ 𝒖𝒅𝒗 = 𝒖𝒗 − ∫ 𝒗𝒅𝒖. 

This formula expresses the method of integration by parts or partial integration. The constant 

of integration is not written because it can be considered to be part of the integral of the right 

side. The method is recommended if the integral on the right side of the formula is not more 

complicated than the given integral. 

 

Example 1.1 Find the integral 

∫ 𝑥𝑒𝑥𝑑𝑥 

Solution 

∫ 𝑥𝑒𝑥𝑑𝑥 = |
let        𝑢 = 𝑥;   𝑑𝑣 = 𝑒𝑥𝑑𝑥              

then  𝑑𝑢 = 𝑑𝑥;   𝑣 = ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥| = 

= 𝑥𝑒𝑥 − ∫ 𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶 

Comment. Let us note that here the formula for calculation of the differential of the function 

𝑣(𝑥) is applied 

𝒅𝒗 = 𝒗′𝒅𝒙 

that we have to integrate to find the function 𝑣(𝑥). 

 

7.3.2.2 Special cases 

There are some special forms of integrals for which we can apply the method described above. 

They include polynomials whose degree is decreasing at derivation. On the other hand, there 

are functions that we cannot simplify by derivation. For instance, the exponential function 𝑒𝑥 

does not change by derivation. These observations point us to some standard situations for 

selection of the function 𝑢 = 𝑢(𝑥). 

Case 1. The integrand is a product of a polynomial and a trigonometric function sin𝑥 or 

cos𝑥 

∫ 𝑃𝑛(𝑥) sin𝑥 𝑑𝑥;  we choose 𝑢 = 𝑃𝑛(𝑥),  then the rest of the expression is the 

differential  𝑑𝑣 = sin𝑥𝑑𝑥 
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Case 2. The integrand is a product of a polynomial and an exponential function 𝑒𝑥 or 𝑎𝑥 

∫ 𝑃𝑛(𝑥) 𝑎𝑥𝑑𝑥;  we choose 𝑢 = 𝑃𝑛(𝑥),  then the differential is 𝑑𝑣 = 𝑎𝑥𝑑𝑥 

Case 3. The integrand is a product of a polynomial and a logarithmic function ln𝑥 or 

log𝑎𝑥 

∫ 𝑃𝑛(𝑥) log𝑎𝑥𝑑𝑥;  we choose 𝑢 = log𝑎𝑥,  then the differential is 𝑑𝑣 = 𝑃𝑛(𝑥)𝑑𝑥 

              Comment. Instead of the polynomial there can be given an arbitrary power 

function      

∫ 𝑥𝑘ln𝑥𝑑𝑥 

Case 4. The integrand is a cyclometric function arcsin𝑥 or arc𝑡𝑎𝑛𝑥 

∫ arcsin𝑥 𝑑𝑥;  we choose 𝑢 = arcsin𝑥,  then the differential is 𝑑𝑣 = 𝑑𝑥 

 

7.3.2.3 Examples 

Example 3.1 Find the integral 

∫ 2𝑥cos𝑥 𝑑𝑥 

Solution 

                                 ∫ 2𝑥cos𝑥 𝑑𝑥 = |
let        𝑢 = 2𝑥;   𝑑𝑣 = cos𝑥 𝑑𝑥                  

then  𝑑𝑢 = 2𝑑𝑥;   𝑣 = ∫ cos𝑥 𝑑𝑥 = sin𝑥
| = 

= 2𝑥sin𝑥 − ∫ 2sin𝑥 𝑑𝑥 = 2𝑥sin𝑥 + 2cos𝑥 + 𝐶 

 

Example 3.2 Find the integral 

∫ 𝑥3ln𝑥 𝑑𝑥 

Solution 

                                    ∫ 𝑥3ln𝑥 𝑑𝑥 = |

let       𝑢 = ln𝑥;    𝑑𝑣 = 𝑥3𝑑𝑥             

then  𝑑𝑢 =
1

𝑥
𝑑𝑥;   𝑣 = ∫ 𝑥3𝑑𝑥 =

𝑥4

4

| = 

=
𝑥4

4
ln𝑥 − ∫

𝑥4

4
∙

1

𝑥
𝑑𝑥 =

𝑥4

4
ln𝑥 −

1

4
∫ 𝑥3𝑑𝑥 = 

=
𝑥4

4
 ln𝑥 −

𝑥4

16
+ 𝐶 
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Example 3.3 Find the integral 

∫ arctan𝑥 𝑑𝑥 

Solution 

                                ∫ arctan𝑥 𝑑𝑥 = |

let        𝑢 = arctan𝑥;     𝑑𝑣 = 𝑑𝑥         

then  𝑑𝑢 =
𝑑𝑥

1 + 𝑥2
;    𝑣 = ∫ 𝑑𝑥 = 𝑥

| = 

= 𝑥arctan𝑥 − ∫
𝑥

1 + 𝑥2
𝑑𝑥 = 𝑥arctan𝑥 −

1

2
∫

2𝑥

1 + 𝑥2
𝑑𝑥 = 

= 𝑥arctan𝑥 −
1

2
∫

𝑑(1 + 𝑥2)

1 + 𝑥2
= 

= 𝑥arctan𝑥 −
1

2
ln|1 + 𝑥2| + 𝐶 

 

In more general cases the functions can be composite, for instance, sin𝑎𝑥;  arctan(𝑎𝑥). 

Example 3.4 Find the integral 

∫(𝑥 + 1)sin4𝑥 𝑑𝑥 

Solution  

∫(𝑥 + 1)sin4𝑥 𝑑𝑥 = |

let        𝑢 = 𝑥 + 1;       𝑑𝑣 = sin4𝑥 𝑑𝑥                  

then  𝑑𝑢 = 𝑑𝑥;   𝑣 = ∫ sin4𝑥 𝑑𝑥 = −
1

4
cos4𝑥

| = 

= −
1

4
(𝑥 + 1)cos4𝑥 +

1

4
∫ cos4𝑥 𝑑𝑥 = 

= −
1

4
(𝑥 + 1)cos4𝑥 +

1

16
sin4𝑥 + 𝐶 

 

7.3.2.4 Repeated application of method 

If the polynomial factor of integrand is not linear, we can apply partial integration repeatedly. 

If the polynomial has degree 𝑛, we apply the method 𝑛 times repeatedly to eliminate the 

degree of the polynomial. 

Example 4.1 Find the integral 

∫ 𝑥3sin𝑥 𝑑𝑥 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

32  

Solution 

For the given integral we will use the method of integration by parts three times 

because the degree of the given polynomial is three. 

                                 ∫ 𝑥3sin𝑥 𝑑𝑥 = |
let        𝑢 = 𝑥3;                 𝑑𝑣 = sin𝑥 𝑑𝑥              

then  𝑑𝑢 = 3𝑥2𝑑𝑥;   𝑣 = ∫ sin𝑥 𝑑𝑥 = −cos𝑥
| = 

= −3𝑥3cos𝑥 + 3 ∫ 𝑥2 cos𝑥 𝑑𝑥 = 

= |
let        𝑢 = 𝑥2;   𝑑𝑣 = cos𝑥 𝑑𝑥              

then  𝑑𝑢 = 2𝑥𝑑𝑥;   𝑣 = ∫ cos𝑥 𝑑𝑥 = sin𝑥
| = 

= −3𝑥3cos𝑥 + 3 (𝑥2sin𝑥 − 2 ∫ 𝑥sin𝑥 𝑑𝑥) = 

= |
let   𝑢 = 𝑥;   𝑑𝑣 = sin𝑥 𝑑𝑥     
then  𝑑𝑢 = 𝑑𝑥;   𝑣 = −cos𝑥

| = 

= −3𝑥3cos𝑥 + 3𝑥2sin𝑥 − 6 (−𝑥cos𝑥 + ∫ cos𝑥 𝑑𝑥) = 

= −3𝑥3cos𝑥 + 3𝑥2sin𝑥 + 6𝑥cos𝑥 − 6sin𝑥 + 𝐶 

 

Example 4.2 Find the integral 

∫(𝑥2 − 3𝑥 + 7)2𝑥𝑑𝑥 

Solution 

                 ∫(𝑥2 − 3𝑥 + 7)2𝑥𝑑𝑥 = |
let        𝑢 = 𝑥2 − 3𝑥 + 7;   𝑑𝑣 = 2𝑥𝑑𝑥              

then  𝑑𝑢 = (2𝑥 − 3)𝑑𝑥;   𝑣 = ∫ 2𝑥𝑑𝑥 =
2𝑥

ln2

| = 

= (𝑥2 − 3𝑥 + 7)
2𝑥

ln2
−

1

ln2
∫(2𝑥 − 3)2𝑥𝑑𝑥 = 

= |

let 𝑢 = 2𝑥 − 3;          𝑑𝑣 = 2𝑥𝑑𝑥

then 𝑢 = 2𝑑𝑥;   𝑣 = ∫ 2𝑥𝑑𝑥 =
2𝑥

ln2

| = 

= (𝑥2 − 3𝑥 + 7)
2𝑥

ln2
−

1

ln2
((2𝑥 − 3)

2𝑥

ln2
−

2

ln2
∫ 2𝑥𝑑𝑥) = 

= (𝑥2 − 3𝑥 + 7)
2𝑥

ln2
− (2𝑥 − 3)

2𝑥

(ln2)2
+

2 ∙ 2𝑥

(ln2)3
+ 𝐶 
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7.3.2.5 Exercises 

Find the integrals 

𝟏.  ∫
𝑥

8
sin𝑥 𝑑𝑥 

𝟐.  ∫ 5𝑥 ∙ 5𝑥𝑑𝑥 

𝟑.  ∫
ln𝑥

𝑥2
𝑑𝑥 

𝟒.  ∫(𝑥2 + 1)cos2𝑥 𝑑𝑥 

𝟓.  ∫ arcsin𝑥 𝑑𝑥 

 

7.3.2.6 Solutions 

𝟏.  ∫
𝑥

8
sin𝑥 𝑑𝑥 

Solution 

                                   ∫
𝑥

8
sin𝑥 𝑑𝑥 = |

let  𝑢 =
𝑥

8
,    𝑑𝑣 = sin𝑥 𝑑𝑥

𝑑𝑢 =
1

8
𝑑𝑥,    𝑣 = ∫ sin𝑥 𝑑𝑥 = −cos𝑥

| = 

= −
𝑥

8
cos𝑥 +

1

8
∫ cos𝑥 𝑑𝑥 = 

= −
𝑥

8
cos𝑥 +

1

8
sin𝑥 + 𝐶 

 

𝟐.  ∫ 5𝑥 ∙ 5𝑥𝑑𝑥 

Solution 

                                   ∫ 5𝑥 ∙ 5𝑥𝑑𝑥 = |

let 𝑢 = 5𝑥,   𝑑𝑣 = 5𝑥𝑑𝑥

𝑑𝑢 = 5𝑑𝑥, 𝑣 = ∫ 5𝑥𝑑𝑥 =
5𝑥

ln5

| = 

= 5𝑥
5𝑥

ln5
−

5

ln5
∫ 5𝑥𝑑𝑥 = 

= 5𝑥
5𝑥

ln5
−

5 ∙ 5𝑥

ln25
+ 𝐶 
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𝟑.  ∫
ln𝑥

𝑥2
𝑑𝑥 

Solution 

                                        ∫
ln𝑥

𝑥2
𝑑𝑥 = |

let  𝑢 = ln𝑥,   𝑑𝑣 =
𝑑𝑥

𝑥2

𝑑𝑢 =
1

𝑥
𝑑𝑥,   𝑣 = ∫ 𝑥−2𝑑𝑥 = −𝑥−1

| = 

= −
ln𝑥

𝑥
+ ∫ 𝑥−2𝑑𝑥 = 

= −
ln𝑥

𝑥
−

1

𝑥
+ 𝐶 

 

𝟒.  ∫(𝑥2 + 1)cos2𝑥 𝑑𝑥 

Solution 

                   ∫(𝑥2 + 1)cos2𝑥 𝑑𝑥 = |
let  𝑢 = 𝑥2 + 1,   𝑑𝑣 = cos2𝑥 𝑑𝑥

𝑑𝑢 = 2𝑥𝑑𝑥;  𝑣 = ∫ cos2𝑥 𝑑𝑥 =
1

2
sin2𝑥

| = 

=
𝑥2 + 1

2
sin2𝑥 −

1

2
∫ sin2𝑥 𝑑𝑥 = 

=
𝑥2 + 1

2
sin2𝑥 +

1

4
cos2𝑥 + 𝐶 

 

𝟓.  ∫ arcsin𝑥 𝑑𝑥 

Solution 

                                ∫ arcsin𝑥 𝑑𝑥 = |

let  𝑢 = arcsin𝑥,    𝑑𝑣 = 𝑑𝑥

𝑑𝑢 =
1

√1 − 𝑥2
𝑑𝑥,   𝑣 = 𝑥

| = 

= 𝑥arcsin𝑥 − ∫
𝑥

√1 − 𝑥2
𝑑𝑥 == |

let  𝑢 = 1 − 𝑥2

𝑑𝑢 = −2𝑥𝑑𝑥
| = 

= 𝑥arcsin𝑥 +
1

2
∫

𝑑𝑢

√𝑢
= 

= 𝑥arcsin𝑥 + √𝑢 + 𝐶 = 

=  𝑥arcsin𝑥 + √1 − 𝑥2 + 𝐶 

Here we used the substitution for the second integral to simplify the integrand. 
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7.3.3 Integration Techniques: Integration of Rational Functions 

 

DETAILED DESCRIPTION: 

In this chapter we will discuss the problem-solving methods for indefinite integrals of rational 

functions. We will introduce proper rational functions and improper rational functions, and 

algebraic methods on how to decompose them into rational fractions or powers and rational 

fractions. Appropriate integral formulas will be considered. Examples of integration of simple 

rational functions will be demonstrated. 

Students can investigate the examples presented by Symbolab Step-by-Step Calculator; 

Algebra; Rational Fractions (URL: https://www.symbolab.com/solver/partial-fractions-calculator). With 

this software it is also possible to check their own solutions by applying the Symbolab calculator 

for integrals. 

AIM: To acquire the technique of integration of rational functions.  

3. Learning Outcomes: 

1. Perform the expansion of proper rational function in partial fractions 

2. Perform the long division of polynomials to get a polynomial plus a proper rational 

function 

3. Solve the integrals of rational functions 

 

Prior Knowledge: algebraic identities; completing the square; factorising of polynomials; roots 

of polynomials; basic integration and derivation formulas. 

Relationship to real maritime problems: Computations of indefinite integrals are used as a 

methodology in calculation of definite integrals.  Differentiation and integration are widely used 

to solve many engineering problems. Practical application of integrals is part of navigation 

theory; for instance, integrals are used in designing the Mercator map. Derivatives and integrals 

helped to improve understanding of the concept of Earth's curve: the distance ships had to 

travel around a curve to get to a specific location. Calculus has been used in shipbuilding for 

many years to determine both the curve of the ship's hull, as well as the area under the hull. 

Content 

1. Rational functions, proper and improper rational functions 

2. Basic integrals for simple cases 

3. Decomposition of partial fractions  

3.1. Case 1. Denominator can be factorised in all linear multipliers 

3.2. Case 2. Denominator contains an irreducible quadratic 

 3.3. Case 3. Denominator contains the repeated linear factor 

4. Computation of improper rational functions 

https://www.symbolab.com/solver/partial-fractions-calculator
file:///C:/Users/Anita/AppData/Local/Temp/Rar$DIa17108.7700/3_3_integration_techniques_rational_functions.docx%23_Definition_of_a
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5. Summary 

6. Exercises 

7. Solutions of the exercises 

 

7.3.3.1 Rational functions, proper and improper rational functions  
 

A rational function has the form  

𝒇(𝒙) =
𝑷𝒏(𝒙)

𝑸𝒎(𝒙)
, 

where 𝑃𝑛(𝑥)  and 𝑄𝑚(𝑥)  are polynomials 

𝑃𝑛(𝑥) = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + ⋯ +𝑎𝑛 

𝑄𝑚(𝑥) = 𝑏0𝑥𝑚 + 𝑏1𝑥𝑚−1 + 𝑏2𝑥𝑚−2 + ⋯ +𝑏𝑚 

If the degree 𝑛 of polynomial 𝑃𝑛(𝑥) is less than the degree 𝑚 of polynomial 𝑄𝑚(𝑥) (𝑛 < 𝑚) 

then the rational function  

𝑓(𝑥) =
𝑃𝑛(𝑥)

𝑄𝑚(𝑥)
 

is called a proper rational function, otherwise it is called an improper rational function. 

For example, 

𝑓(𝑥) =
2

𝑥 + 3
 

𝑔(𝑥) =
2𝑥 − 1

𝑥2 − 4
 

𝑡(𝑥) =
𝑥 + 1

𝑥 − 3
 

𝑠(𝑥) =
𝑥2 + 3𝑥 − 4

𝑥 + 1
 

functions 𝑓(𝑥) and 𝑔(𝑥)  are proper rational functions. Functions 𝑡(𝑥) and 𝑠(𝑥) are improper 

rational functions. 

 

7.3.3.2 Basic integrals for simple cases 

Simple cases of rational functions in a general form are the following 

𝑓(𝑥) =
𝐴

𝑥 + 𝐵
 

𝑔(𝑥) =
𝐴

(𝑥 + 𝐵)𝑚
 

file:///C:/Users/Anita/AppData/Local/Temp/Rar$DIa17108.7700/3_3_integration_techniques_rational_functions.docx%23_Definition_of_a
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𝑠(𝑥) =
2𝐴𝑥 + 𝐵

𝐴𝑥2 + 𝐵𝑥 + 𝐷
 

Let us integrate these functions by applying formulas 

∫
𝑑𝑥

𝑥 + 𝐵
= ln|𝑥 + 𝐵| + 𝐶 

  ∫
𝑑𝑢

𝑢𝑚
=

𝑢−𝑚+1

−𝑚 + 1
+ 𝐶 

Integral of the first function is 

∫ 𝑓(𝑥)𝑑𝑥 = ∫
𝐴

𝑥 + 𝐵
𝑑𝑥 = 𝐴 ∫

𝑑𝑥

𝑥 + 𝐵
= 𝐴 ∙ ln|𝑥 + 𝐵| + 𝐶 

We will replace the linear argument of integrand 𝑔(𝑥) by the function 𝑢 = 𝑥 + 𝐵 

                                       ∫ 𝑔(𝑥) 𝑑𝑥 = ∫
𝐴

(𝑥 + 𝐵)𝑚
𝑑𝑥 = |

𝑢 = 𝑥 + 𝐵
𝑑𝑢 = 𝑑𝑥

| = 𝐴 ∫
𝑑𝑢

𝑢𝑚
= 

= 𝐴
𝑢−𝑚+1

−𝑚 + 1
+ 𝐶 = 𝐴

(𝑥 + 𝐵)−𝑚+1

−𝑚 + 1
+ 𝐶 

For function 𝑠(𝑥) we will use substitution 𝑢 = 𝐴𝑥2 + 𝐵𝑥 + 𝐷 and 𝑑𝑢 = 2𝐴𝑥 + 𝐵 

                                        ∫ 𝑠(𝑥)𝑑𝑥 = ∫
2𝐴𝑥 + 𝐵

𝐴𝑥2 + 𝐵𝑥 + 𝐷
𝑑𝑥 = 

= ∫
𝑑𝑢

𝑢
= ln|𝑢| + 𝐶 = ln|𝐴𝑥2 + 𝐵𝑥 + 𝐷| + 𝐶 

 

Example 2.1 

∫
2

𝑥 + 3
𝑑𝑥 = 2 ∫

𝑑𝑥

𝑥 + 3
= 2ln|𝑥 + 3| + 𝐶 

 

Example 2.2 

∫
𝑑𝑥

(𝑥 − 1)7
=

(𝑥 − 1)−7+1

−7 + 1
+ 𝐶 =

−1

6(𝑥 − 1)6
+ 𝐶 

 

Example 2.3 

                      ∫
2𝑥 + 5

𝑥2 + 5𝑥 + 10
𝑑𝑥 = 

= |𝑢 = 𝑥2 + 5𝑥 + 10 and 𝑑𝑢 = (2𝑥 + 5)𝑑𝑥| = 

= ln|𝑥2 + 5𝑥 + 10| + 𝐶 
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In other cases, it is necessary to decompose the rational function into partial fractions to 

simplify the integration. 

 

7.3.3.3 Decomposition of partial fractions  

Let us have a proper rational function 

𝑓(𝑥) =
𝑃𝑛(𝑥)

𝑄𝑚(𝑥)
;   𝑛 < 𝑚 

We can apply the method of decomposition of partial fractions if the denominator can be 

factorised into fractions. Here we discuss three cases of decomposition of partial fractions: 

Case 1: Denominator can be factorised in all linear multipliers; 

Case 2: Denominator contains an irreducible quadratic; 

Case 3: Denominator contains the repeated linear factor. 

 

1.1. Case 1. Denominator can be factorised in all linear multipliers 

The following example shows that we can integrate the function more easily if it is decomposed 

into partial fractions with linear denominators 

Example 3.1 

Suppose that we know the decomposition of the given integrand in two terms. 

                           ∫
𝑥 + 8

𝑥2 + 𝑥 − 2
𝑑𝑥 = ∫ (

3

𝑥 − 1
−

2

𝑥 + 2
) 𝑑𝑥 = 

= ∫
3

𝑥 − 1
𝑑𝑥 − ∫

2

𝑥 + 2
𝑑𝑥 = 

= 3ln|𝑥 − 1| − 2ln|𝑥 + 2| + 𝐶 

 

If the denominator 𝑄
2

(𝑥) = 𝑘𝑥2 + 𝑞𝑥 + 𝑝 has real roots 𝑥 = −𝑎 and  𝑥 = −𝑏, it is reducible 

𝑄2(𝑥) = 𝑘(𝑥 + 𝑎)(𝑥 + 𝑏) 

We can split the given rational expression into partial fractions 

𝑅(𝑥)

𝑄2(𝑥)
=

𝐴

𝑥 + 𝑎
+

𝐵

𝑥 + 𝑏
 

We know that the coefficients of polynomials and roots of denominator a and b are definite. 

To determinate the unknown constants 𝐴 and 𝐵, we will equalize the denominators of partial 

fractions, equate the numerators, discard them, and get the equation 

𝑅(𝑥)

𝑄2(𝑥)
=

𝑘𝐴(𝑥 + 𝑏)

(𝑥 + 𝑎)(𝑥 + 𝑏)
+

𝑘𝐵(𝑥 + 𝑎)

(𝑥 + 𝑏)(𝑥 + 𝑎)
 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

39  

𝑅(𝑥) = 𝑘𝐴(𝑥 + 𝑏) + 𝑘𝐵(𝑥 + 𝑎) 

Let us plug the values 𝑥 = −𝑎 and then 𝑥 = −𝑏 into the equation to get  

𝑅(−𝑎) = 𝑘𝐴(𝑏 − 𝑎) 

𝑅(−𝑏) = 𝑘𝐵(𝑎 − 𝑏) 

From these equations we can calculate the values of the unknown constants 

𝐴 =
𝑅(−𝑎)

𝑘(𝑏 − 𝑎)
 

𝐵 =
𝑅(−𝑏)

𝑘(𝑎 − 𝑏)
 

Similarly we split the proper rational part in elementary parts if the denominator has a 

polynomial with higher degree as two. In the general case, a denominator can have more than 

two linear multipliers 

𝑃𝑛(𝑥)

𝑘(𝑥 + 𝑎1)(𝑥 + 𝑎2) ∙ … ∙ (𝑥 + 𝑎𝑚)
=

𝐴1

𝑥 + 𝑎1
+

𝐴2

𝑥 + 𝑎2
+. . . +

𝐴𝑚

𝑥 + 𝑎𝑚
 

 

Example 3.2 

Compute the integral 

∫
4𝑥 + 7

𝑥2 + 𝑥 − 6
𝑑𝑥 

Solution 

First part: decomposition of partial fractions  

Step 1. Factorise the denominator    

 𝑥2 + 𝑥 − 6 = (𝑥 − 2)(𝑥 + 3) 

Step2. Write partial fractions with unknown constants 

4𝑥 + 7

𝑥2 + 𝑥 − 6
=

4𝑥 + 7

(𝑥 − 2)(𝑥 + 3)
=

𝐴

𝑥 − 2
+

𝐵

𝑥 + 3
 

Step 3. Equalize the denominators, equate the numerators, and discard denominators 

4𝑥 + 7 = 𝐴(𝑥 + 3) + 𝐵(𝑥 − 2) 

Step 4. Plug in 𝑥 = 2 to calculate constant 𝐴 

4 ∙ 2 + 7 = 𝐴(2 + 3) + 𝐵(2 − 2) 

      8 + 7 = 5𝐴 

              𝐴 = 3 

Step 5. Plug in 𝑥 = −3 to calculate constant 𝐵 
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                                                                   4 ∙ (−3) + 7 = 𝐴(−3 + 3) + 𝐵(−3 − 2) 

−12 + 7 = −5𝐵 

              𝐵 = 1 

Second part: integration 

                           ∫
4𝑥 + 7

𝑥2 + 𝑥 − 6
𝑑𝑥 = ∫ (

3

𝑥 − 2
+

1

𝑥 + 3
) 𝑑𝑥 = 

= 3ln|𝑥 − 2| + ln|𝑥 + 3| + 𝐶 

Answer  

                          ∫
4𝑥 + 7

𝑥2 + 𝑥 − 6
𝑑𝑥 = 3ln|𝑥 − 2| + ln|𝑥 + 3| + 𝐶 

 

 

1.2. Case 2. Denominator contains an irreducible quadratic 

If the denominator 𝑄
3

(𝑥) of a rational function is reducible in the following way 

  𝑄3(𝑥) = 𝑘(𝑥 + 𝑎)(𝑥2 + 𝑏), 

we can decompose the given rational expression into partial fractions 

𝑅(𝑥)

𝑄3(𝑥)
=

𝐴

𝑥 + 𝑎
+

𝐵𝑥 + 𝐷

𝑥2 + 𝑏
 

Similarly, we express 

𝑅(𝑥) = 𝑘𝐴(𝑥2 + 𝑏) + 𝑘𝐵𝑥(𝑥 + 𝑎) + 𝑘𝐷(𝑥 + 𝑎) 

or, considering that the degree of polynomial 𝑅(𝑥) does not exceed 2 

𝑎0𝑥2 + 𝑎1𝑥+𝑎2 =  𝑘𝐴(𝑥2 + 𝑏) + 𝑘𝐵𝑥(𝑥 + 𝑎) + 𝑘𝐷(𝑥 + 𝑎) 

Two polynomials are equal by the definition if they have the same degree and all corresponding 
coefficients are equal. 

Therefore, we can write a system of equations and calculate the unknown constants 𝐴, 𝐵, 𝐷 

{

𝑎0 = 𝑘𝐴 + 𝑘𝐵
𝑎1 = 𝑘𝐵𝑎 + 𝑘𝐷

𝑎2 = 𝑘𝐴𝑏 + 𝑘𝐷𝑎
 

Example 3.3 

Compute the integral  

∫
4𝑥2 + 2𝑥 − 3

(𝑥 − 2)(𝑥2 + 1)
𝑑𝑥 
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Solution 

First part: decomposition of partial fractions  

Step1. Write partial fractions with unknown constants 

4𝑥2 + 2𝑥 − 3

(𝑥 − 2)(𝑥2 + 1)
=

𝐴

𝑥 − 2
+

𝐵𝑥 + 𝐷

𝑥2 + 1
 

Step 2. Equalize the denominators, equate the numerators, and discard them 

4𝑥2 + 2𝑥 − 3 = 𝐴(𝑥2 + 1) + 𝐵𝑥(𝑥 − 2) + 𝐷(𝑥 − 2) 

Step 3. Create a system of equations 

{
4 = 𝐴 + 𝐵

       2 = −2𝐵 + 𝐷
−3 = 𝐴 − 2𝐷

 

Step 4. Express A from the first equation and plug it into the last equation to get a 

system of two equations 

  𝐴 = 4 − 𝐵 

−3 = 4 − 𝐵 − 2𝐷 

{
2 = −2𝐵 + 𝐷

−7 = −𝐵 − 2𝐷
 

Step 5. Multiply the first equation by 2 and add equations 

           −3 = −5𝐵;    𝐵 = 0.6 

Step 6. Calculate 𝐴 and 𝐷 

𝐴 = 4 − 0.6 = 3.4 

𝐷 = 2 + 2𝐵 = 2 + 1.2 = 3.2 

Second part: integration 

                 ∫
4𝑥2 + 2𝑥 − 3

(𝑥 − 2)(𝑥2 + 1)
𝑑𝑥 = 

= ∫ (
3.4

𝑥 − 2
+

0.6𝑥 + 3.2

𝑥2 + 1
) 𝑑𝑥 = 

= ∫
3.4

𝑥 − 2
𝑑𝑥 + 0.3 ∫

2𝑥𝑑𝑥

𝑥2 + 1
+ 3.2 ∫

𝑑𝑥

𝑥2 + 1
= 

= 3.4ln|𝑥 − 2| + 0.3ln|𝑥2 + 1| + 3.2arctan𝑥 + 𝐶 

 

Answer 

                  ∫
4𝑥2 + 2𝑥 − 3

(𝑥 − 2)(𝑥2 + 1)
𝑑𝑥 = 3.4ln|𝑥 − 2| + 0.3ln|𝑥2 + 1| + 3.2arctan𝑥 + 𝐶 
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3.3. Case 3. Denominator contains the repeated linear factor 

If the denominator 𝑄𝑚(𝑥) of a rational function is reducible 

𝑄𝑚(𝑥) = 𝑘(𝑥 + 𝑎)𝑚 = 𝑘(𝑥 + 𝑎) ∙ (𝑥 + 𝑎) ∙ … ∙ (𝑥 + 𝑎), 

we can decompose the given rational expression into partial fractions 

𝑃𝑛(𝑥)

𝑄𝑚(𝑥)
=

𝐴1

𝑥 + 𝑎
+

𝐴2

(𝑥 + 𝑎)2
+ ⋯ +

𝐴𝑚

(𝑥 + 𝑎)𝑚
 

To calculate the unknown constants 𝐴1, 𝐴2, …, 𝐴𝑚 we can use the same method as in case 2. 

 

Example 3.4. 

Compute 

∫
𝑥2 − 𝑥 − 4

(𝑥 − 1)3
𝑑𝑥 

Solution 

First part: decomposition of partial fractions  

Step1. Write partial fractions with unknown constants 

𝑥2 − 𝑥 − 4

(𝑥 − 1)3
=

𝐴

𝑥 − 1
+

𝐵

(𝑥 − 1)2
+

𝐷

(𝑥 − 1)3
 

Step 2. Equalize the denominators, equate the numerators, and discard them 

𝑥2 − 𝑥 − 4 = 𝐴(𝑥 − 1)2 + 𝐵(𝑥 − 1) + 𝐷 

𝑥2 − 𝑥 − 4 = 𝐴𝑥2 − 2𝐴𝑥 + 𝐴 + 𝐵𝑥 − 𝐵 + 𝐷 

Step 3. Create a system of equations 

{
1 = 𝐴             

−1 = −2𝐴 + 𝐵 
−4 = 𝐴 − 𝐵 + 𝐷

 

Step 4. Calculate 𝐵 and 𝐷 

𝐵 = −1 + 2 = 1 

𝐷 = −4 − 1 + 1 = −4 

Second part: integration 

                           ∫
𝑥2 − 𝑥 − 4

(𝑥 − 1)3
𝑑𝑥 = 

= ∫ (
1

𝑥 − 1
+

1

(𝑥 − 1)2
−

4

(𝑥 − 1)3
) 𝑑𝑥 = 
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= ln|𝑥 − 1| − (𝑥 − 1)−1 − 4
(𝑥 − 1)−2

−2
+ 𝐶 

Answer 

                            ∫
𝑥2 − 𝑥 − 4

(𝑥 − 1)3
𝑑𝑥 = ln|𝑥 − 1| −

1

𝑥 − 1
+

2

(𝑥 − 1)2
+ 𝐶 

 

 

7.3.3.4 Computation of improper rational functions 

An improper rational function can be expressed as a polynomial plus a proper rational function 

𝑓(𝑥) =
𝑃𝑛(𝑥)

𝑄𝑚(𝑥)
= 𝑇𝑛−𝑚(𝑥) +

𝑅𝑘(𝑥)

𝑄𝑚(𝑥)
, 

where polynomial 𝑇𝑛−𝑚(𝑥) has degree 𝑛 − 𝑚 and 𝑛 ≥ 𝑚;   𝑘 < 𝑚. It is necessary to perform 

long division of polynomials to get this result. 

 

Example 4.1.  

Compute 

∫
4𝑥3 − 12𝑥 + 16

𝑥 − 2
𝑑𝑥 

Solution 

Step 1. Perform long division of polynomials 

4𝑥2 + 8𝑥 + 4

𝑥 − 2)4𝑥3 − 12𝑥 + 16            

−(4𝑥3 − 8𝑥2)             

                                       

8𝑥2 − 12𝑥 + 16            
−(8𝑥2 − 16𝑥)             

                            
4𝑥 + 16            

−(4𝑥 − 8)

              24
             

            

 

Step 2. Integrate step by step 

                 ∫
4𝑥3 − 12𝑥 + 16

𝑥 − 2
𝑑𝑥 =  

= ∫ (4𝑥2 + 8𝑥 + 4 +
24

𝑥 − 2
) 𝑑𝑥 = 

= ∫ 4𝑥2𝑑𝑥 + ∫ 8𝑥𝑑𝑥 + ∫ 4𝑑𝑥 + ∫
24

𝑥 − 2
𝑑𝑥 = 
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=
4𝑥3

3
+

8𝑥2

2
+ 4𝑥 + 24ln|𝑥 − 2| + 𝐶 

Answer 

                  ∫
4𝑥3 − 12𝑥 + 16

𝑥 − 2
𝑑𝑥 =

4𝑥3

3
+ 4𝑥2 + 4𝑥 + 24ln|𝑥 − 2| + 𝐶 

 

7.3.3.5 Summary 

To evaluate the integral of a rational function, the following steps are recommended 

Starting step. Evaluate the given rational function ∫
𝑃𝑛(𝑥)

𝑄𝑚(𝑥)
𝑑𝑥 

Case 1. The given function is an improper rational function (𝑛 ≥ 𝑚) 

Step 1.1. Perform long division of polynomials 𝑃𝑛(𝑥): 𝑄𝑚(𝑥) 

Step 1.2. Rewrite the integral as an integral of a polynomial plus a proper rational part 

Step 1.3. Integrate the polynomial 

Step 1.4. For the integral of the proper rational part complete case 2 if necessary or 

integrate 

Case 2. The given function is a proper rational function 𝑓(𝑥) =
𝑃𝑛(𝑥)

𝑄𝑚(𝑥)
; (𝑛 < 𝑚) 

Step 2.1. Factorise the denominator if necessary 

Step 2.2. Complete the decomposition of the partial fraction  

Step 2.3. Integrate simple rational fractions 

Comment. There are two methods how to complete Step 2.2. We can apply “plug-in” method, 

that is, -  plug in useful values of 𝑥 into the polynomial equation (see example 3.2.), or we can 

apply the method of unknown coefficients, that is, equate the coefficients of two equal 

polynomials (see examples 3.3 and 3.4), or we can combine both methods. 

 

Example 5.1. 

Compute 

∫
𝑥4 + 12𝑥 − 6

𝑥2(𝑥 − 1)
𝑑𝑥 

Solution 

Let us follow the instructions above. We have case 1 (given function is an improper 

rational function) and we complete step 1.1 
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𝑥 + 1         

𝑥3 − 𝑥2)𝑥4 + 12𝑥 − 6            

     −(𝑥4 − 𝑥3)             

                                       

𝑥3 + 12𝑥 − 6            
−(𝑥3 − 𝑥2)             

                            𝑥2 + 12𝑥 − 6       
            

 

Step 1.2.  

                                                       ∫
𝑥4 + 12𝑥 − 6

𝑥2(𝑥 − 1)
𝑑𝑥 = ∫ (𝑥 + 1 +

𝑥2 + 12𝑥 − 6

𝑥2(𝑥 − 1)
) 𝑑𝑥 

Step 1.3. 

∫ (𝑥 + 1 +
𝑥2 + 12𝑥 − 6

𝑥2(𝑥 − 1)
) 𝑑𝑥 =

𝑥2

2
+ 𝑥 + ∫

𝑥2 + 12𝑥 − 6

𝑥2(𝑥 − 1)
𝑑𝑥 

Last integral is that of a proper rational function. We complete step 2.2. 

                                                                 
𝑥2 + 12𝑥 − 6

𝑥2(𝑥 − 1)
=

𝐴

𝑥
+

𝐵

𝑥2
+

𝐶

𝑥 − 1
 

Let us apply the “plug-in” method. Get rid of all the denominators and write the 

equation 

     𝑥2 + 12𝑥 − 6 = 𝐴𝑥(𝑥 − 1) + 𝐵(𝑥 − 1) + 𝐶𝑥2 

We can use the roots of denominator 𝑥 = 0 and 𝑥 = 1. We choose the constant 𝑥 =

−1 additionally. 

If 𝑥 = 0 we get the equation 

−6 = −𝐵;    𝐵 = 6 

If 𝑥 = 1 we get the equation 

1 + 12 − 6 = 𝐶;    𝐶 = 7 

If 𝑥 = −1 we get the equation 

1 − 12 − 6 = 𝐴(−1)(−2) + 𝐵(−2) + 𝐶 

𝐴 = −6 

We get simple rational fractions and can integrate these 

𝑥2 + 12𝑥 − 6

𝑥2(𝑥 − 1)
=

−6

𝑥
+

6

𝑥2
+

7

𝑥 − 1
 

             ∫ (
−6

𝑥
+

6

𝑥2
+

7

𝑥 − 1
) 𝑑𝑥 = −6ln |𝑥| + 6

𝑥−1

−1
+ 7ln|𝑥 − 1| + 𝐶 
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Answer 

∫
𝑥4 + 12𝑥 − 6

𝑥2(𝑥 − 1)
𝑑𝑥 =

𝑥2

2
+ 𝑥 − 6ln|𝑥| −

6

𝑥
+ 7ln|𝑥 − 1| + 𝐶 

 

7.3.3.6 Exercises 

Evaluate the following indefinite integrals of rational functions 

1. ∫
𝑑𝑥

1 + 7𝑥
 

2. ∫
2

(𝑥 − 1)(𝑥 + 2)
𝑑𝑥 

3. ∫
𝑥 − 1

𝑥(𝑥 − 2)(𝑥 − 3)
𝑑𝑥 

4. ∫
𝑥

4 − 𝑥2
𝑑𝑥 

5. ∫
𝑥 + 6

𝑥2 − 8𝑥
𝑑𝑥 

6. ∫
𝑥 + 5

𝑥2 − 4𝑥 − 12
𝑑𝑥 

7. ∫
2𝑥

𝑥2 − 4𝑥 + 20
𝑑𝑥 

8. ∫
2𝑥 + 1

𝑥2(𝑥 + 2)
𝑑𝑥 

9. ∫
3

𝑥(1 + 𝑥2)
𝑑𝑥 

10. ∫
3𝑥

𝑥 + 1
𝑑𝑥 

11. ∫
𝑥3

𝑥(𝑥 + 3)
𝑑𝑥 

 
 

7.3.3.7 Solution of the exercises 
 

1. ∫
𝑑𝑥

1 + 7𝑥
 

Solution 

∫
𝑑𝑥

1 + 7𝑥
=

1

7
∫

𝑑(7𝑥)

1 + 7𝑥
=

1

7
ln|1 + 7𝑥| + 𝐶 
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2. ∫
2

(𝑥 − 1)(𝑥 + 2)
𝑑𝑥 

Solution 

Let us find elementary partial fractions 

2

(𝑥 − 1)(𝑥 + 2)
=

𝐴

𝑥 − 1
+

𝐵

𝑥 + 2
 

2 = 𝐴(𝑥 + 2) + 𝐵(𝑥 − 1) 

𝑥 = 1;    2 = 𝐴 ∙ 3;    𝐴 =
2

3
 

𝑥 = −2;   2 = 𝐵 ∙ (−3);   𝐵 =
−2

3
 

2

(𝑥 − 1)(𝑥 + 2)
=

2

3
∙

1

𝑥 − 1
−

2

3
∙

1

𝑥 + 2
 

Now we can change the integral 

                   ∫
2

(𝑥 − 1)(𝑥 + 2)
𝑑𝑥 = 

=
2

3
∫

𝑑𝑥

𝑥 − 1
−

2

3
∫

𝑑𝑥

𝑥 + 2
= 

=
2

3
ln|𝑥 − 1| −

2

3
ln|𝑥 + 2| + 𝐶 

 

3. ∫
𝑥 − 1

𝑥(𝑥 − 2)(𝑥 − 3)
𝑑𝑥 

Solution 

Let us find partial fractions 

𝑥 − 1

𝑥(𝑥 − 2)(𝑥 − 3)
=

𝐴

𝑥
+

𝐵

𝑥 − 2
+

𝐶

𝑥 − 3
 

𝑥 − 1 = 𝐴(𝑥 − 2)(𝑥 − 3) + 𝐵𝑥(𝑥 − 3) + 𝐶𝑥(𝑥 − 2) 

𝑥 = 0;  −1 = 𝐴(−2)(−3);   𝐴 = −
1

6
 

𝑥 = 2;   1 = 𝐵 ∙ 2 ∙ (−1);   𝐵 = −
1

2
 

𝑥 = 3;   2 = 𝐶 ∙ 3;   𝐶 =
2

3
 

Let us compute the integral 

                               ∫
𝑥 − 1

𝑥(𝑥 − 2)(𝑥 − 3)
𝑑𝑥 = 
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= −
1

6
∫

𝑑𝑥

𝑥
−

1

2
∫

𝑑𝑥

𝑥 − 2
+

2

3
∫

𝑑𝑥

𝑥 − 3
= 

= −
1

6
ln|𝑥| −

1

2
ln|𝑥 − 2| +

2

3
ln|𝑥 − 3| + 𝐶 

 

4. ∫
𝑥

4 − 𝑥2
𝑑𝑥 

Solution 

Factorise the denominator 

𝑥

4 − 𝑥2
=

𝑥

(2 − 𝑥)(2 + 𝑥)
 

Find partial fractions 

𝑥

(2 − 𝑥)(2 + 𝑥)
=

𝐴

2 − 𝑥
+

𝐵

2 + 𝑥
 

𝑥 = 𝐴(2 + 𝑥) + 𝐵(2 − 𝑥) 

𝑥 = 2;   2 = 𝐴 ∙ 4;   𝐴 =
1

2
 

𝑥 = −2;  −2 = 𝐵 ∙ 4;   𝐵 = −
1

2
 

Compute the integral 

                                                  ∫
𝑥

4 − 𝑥2
𝑑𝑥 = 

=
1

2
∫

𝑑𝑥

2 − 𝑥
−

1

2
∫

𝑑𝑥

2 + 𝑥
= = 

= −
1

2
ln|2 − 𝑥| −

1

2
ln|2 + 𝑥| + 𝐶 

Comment 

                                                          ∫
𝑑𝑥

2 − 𝑥
= 

= − ∫
𝑑𝑥

𝑥 − 2
= −ln|𝑥 − 2| + 𝐶 = 

= −ln|2 − 𝑥| + 𝐶 

 

5. ∫
𝑥 + 6

𝑥2 − 8𝑥
𝑑𝑥 

Solution 

Factorise the denominator 
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𝑥 + 6

𝑥2 − 8𝑥
=

𝑥 + 6

𝑥(𝑥 − 8)
 

Find partial fractions 

𝑥 + 6

𝑥(𝑥 − 8)
=

𝐴

𝑥
+

𝐵

𝑥 − 8
 

𝑥 + 6 = 𝐴(𝑥 − 8) + 𝐵𝑥 

𝑥 = 0;   6 = 𝐴 ∙ (−8);   𝐴 = −
3

4
 

𝑥 = 8;   14 = 𝐵 ∙ 8;   𝐵 =
7

4
 

Compute the integral 

                                               ∫
𝑥 + 6

𝑥2 − 8𝑥
𝑑𝑥 = 

= −
3

4
∫

𝑑𝑥

𝑥
+

7

4
∫

𝑑𝑥

𝑥 − 8
= 

= −
3

4
ln|𝑥| +

7

4
ln|𝑥 − 8| + 𝐶 

 

6. ∫
𝑥 + 5

𝑥2 − 4𝑥 − 12
𝑑𝑥 

Solution 

Factorise the denominator 

𝑥 + 5

𝑥2 − 4𝑥 − 12
=

𝑥 + 5

(𝑥 − 6)(𝑥 + 2)
 

Find partial fractions 

𝑥 + 5

(𝑥 − 6)(𝑥 + 2)
=

𝐴

𝑥 − 6
+

𝐵

𝑥 + 2
 

𝑥 + 5 = 𝐴(𝑥 + 2) + 𝐵(𝑥 − 6) 

𝑥 = 6;   11 = 𝐴 ∙ 8;   𝐴 =
11

8
 

𝑥 = −2;   3 = 𝐵 ∙ (−8);   𝐵 = −
3

8
 

Compute the integral 

                                     ∫
𝑥 + 5

𝑥2 − 4𝑥 − 12
𝑑𝑥 = 

=
11

8
∫

𝑑𝑥

𝑥 − 6
−

3

8
∫

𝑑𝑥

𝑥 + 2
= 
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=
11

8
ln|𝑥 − 6| −

3

8
ln|𝑥 + 2| + 𝐶 

 

7. ∫
2𝑥

𝑥2 − 4𝑥 + 20
𝑑𝑥 

Solution 
Here we cannot factorise the dominator. We will use another approach: substitution 
Let us construct two partial fractions 

2𝑥

𝑥2 − 4𝑥 + 20
=

2𝑥 − 4 + 4

𝑥2 − 4𝑥 + 20
=

2𝑥 − 4

𝑥2 − 4𝑥 + 20
+

4

𝑥2 − 4𝑥 + 20
 

Now we will integrate two integrals 

      ∫
2𝑥

𝑥2 − 4𝑥 + 20
𝑑𝑥 = ∫

2𝑥 − 4

𝑥2 − 4𝑥 + 20
𝑑𝑥 + 4 ∫

𝑑𝑥

𝑥2 − 4𝑥 + 20
= 

= |

for first integral

let    𝑢 = 𝑥2 − 4𝑥 + 20
then 𝑑𝑢 = (2𝑥 − 4)𝑑𝑥

;  
for second integral                                    

let 𝑢 = 𝑥 − 2;  𝑥2 − 4𝑥 + 4 + 16 = 𝑢2 + 16
then  𝑑𝑢 = 𝑑𝑥                                                         

| = 

= ∫
𝑑𝑢

𝑢
+ 4 ∫

𝑑𝑢

𝑢2 + 16
= ln|𝑢| + 4 ∙

1

4
arctan

𝑢

4
+ 𝐶 = 

= ln|𝑥2 − 4𝑥 + 20| + arctan
𝑥 − 2

4
+ 𝐶 

 

8. ∫
2𝑥 + 1

𝑥2(𝑥 + 2)
𝑑𝑥 

Solution 

Let us find partial fractions of integrand 

2𝑥 + 1

𝑥2(𝑥 + 2)
=

𝐴

𝑥
+

𝐵

𝑥2
+

𝐶

𝑥 + 2
 

2𝑥 + 1 = 𝐴𝑥(𝑥 + 2) + 𝐵(𝑥 + 2) + 𝐶𝑥2 

   𝑥 = 0;        1 = 2𝐵;     𝐵 = 0.5 

   𝑥 = −2;   −4 + 1 = 4𝐶;   𝐶 = −0.75 

   𝑥 = −1;   −2 + 1 = −𝐴 + 𝐵 + 𝐶;     

−1 = −𝐴 − 0.25;      𝐴 = 0.75    

We can split the integral in separate parts 

                                            ∫
2𝑥 + 1

𝑥2(𝑥 + 2)
𝑑𝑥 = 

= 0.75 ∫
𝑑𝑥

𝑥
+ 0.5 ∫

𝑑𝑥

𝑥2
− 0.75 ∫

𝑑𝑥

𝑥 + 2
= 
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= 0.75ln|𝑥| − 0.5
1

𝑥
− 0.75ln|𝑥 + 2| + 𝐶 

 

9. ∫
3

𝑥(1 + 𝑥2)
𝑑𝑥 

Solution 

We find partial fractions 

3

𝑥(1 + 𝑥2)
=

𝐴

𝑥
+

𝐵𝑥 + 𝐶

1 + 𝑥2
 

3 = 𝐴(1 + 𝑥2) + 𝐵𝑥2 + 𝐶𝑥 

𝑥 = 0;   3 = 𝐴  

For other coefficients we create a system of equations 

{
𝐴 + 𝐵 = 0

𝐶 = 0
;    𝐵 = −3 

We integrate 

                                            ∫
3

𝑥(1 + 𝑥2)
𝑑𝑥 = 

= 3 ∫
𝑑𝑥

𝑥
− 3 ∫

𝑥𝑑𝑥

1 + 𝑥2
= 

= 3ln|𝑥| − 1.5 ∫
2𝑥𝑑𝑥

1 + 𝑥2
= 

= 3ln|𝑥| − 1.5ln(1 + 𝑥2) + 𝐶 

 

10. ∫
3𝑥

𝑥 + 1
𝑑𝑥 

Solution 

The integrand is an improper rational part. We will transform this rational in the 
following way 

3𝑥

𝑥 + 1
= 3

𝑥 + 1 − 1

𝑥 + 1
= 3 −

3

𝑥 + 1
 

We integrate 

                                                     ∫
3𝑥

𝑥 + 1
𝑑𝑥 = 

= 3 ∫ 𝑑𝑥 − 3 ∫
𝑑𝑥

𝑥 + 1
= 

= 3𝑥 − 3ln|𝑥 + 1| + 𝐶 
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11. ∫
𝑥3

𝑥(𝑥 + 3)
𝑑𝑥 

Solution 

We simplify the expression and then perform a long division 

𝑥3

𝑥(𝑥 + 3)
=

𝑥2

𝑥 + 3
 

𝑥 − 3         

𝑥 + 3)𝑥2                           

     −(𝑥2 + 3𝑥)             

                                       
−3𝑥                                    

−(−3𝑥 − 9)                   

                                9                                 
            

 

𝑥2

𝑥 + 3
= 𝑥 − 3 +

9

𝑥 + 3
 

We integrate 

                                              ∫
𝑥3

𝑥(𝑥 + 3)
𝑑𝑥 = 

= ∫
𝑥2

𝑥 + 3
𝑑𝑥 = 

= ∫ 𝑥𝑑𝑥 − 3 ∫ 𝑑𝑥 + 9 ∫
𝑑𝑥

𝑥 + 3
= 

=
𝑥2

2
− 3𝑥 + 9ln|𝑥 + 3| + 𝐶 
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7.3.4 Integration Techniques: Integration of Trigonometric Functions 

DETAILED DESCRIPTION: 

Various oscillation processes can be described by trigonometric functions. The research of such 

processes requires the calculation of integrals where integrands are composite functions. 

Trigonometric identities are useful to modify these integrals. In this chapter we will present the 

application of trigonometric formulas for more common cases and the appropriate substitution 

for solving integrals. The method of trigonometric substitution will be introduced additionally. 

AIM: To learn the use of trigonometric identities and special cases of substitution for 

trigonometric integrands.

Learning Outcomes: 

1. Students will be able integrate the integrals of trigonometric functions applying 

some trigonometric identities. 

2. Students can apply the trigonometric substitution. 

 

Prior Knowledge: rules of integration and differentiation; substitution methods for integrals; 

algebra and trigonometry formulas. 

Relationship to real maritime problems: trigonometric integrals are useful for describing and 

for solving different problems on sinusoidal processes – for example, to construct an effective 

shape of a ship propellers’ blades, or to calculate wave resistance for steady motion in ship’s 

control equipment. 

Content 

1. Composite trigonometric functions of a linear argument 

2. Product of sines and cosines 

3. Powers of trigonometric functions 

4. Double-angle trigonometric identity 

5. Trigonometric substitution 

6. Exercises 

7. Solutions 
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7.3.4.1 Composite trigonometric functions of a linear argument 

Some of the simplest cases where integrals involve sine and cosine functions are the following 

∫ sin𝑎𝑥 𝑑𝑥 ;   ∫ cos𝑎𝑥 𝑑𝑥 ;  ∫ tan𝑎𝑥 𝑑𝑥  

For such cases we can use simple substitution, for instance, as we can see in the example 1.1. 

 

Example 1.1 Compute the integral 

∫ sin𝑎𝑥 𝑑𝑥 

Solution 

                                     ∫ sin𝑎𝑥 𝑑𝑥 = |
let     𝑢 = 𝑎𝑥   

then 𝑑𝑢 = 𝑎𝑑𝑥
| = 

=
1

𝑎
∫ sin𝑢 𝑑𝑢 = −

1

𝑎
cos𝑢 + 𝐶 = 

= −
1

𝑎
cos𝑎𝑥 + 𝐶 

 

A slightly more complicated case is the integrand that is a tangent function 

Example 1.2 Compute the integral 

∫ tan𝑎𝑥𝑑𝑥 

Solution 

                                    ∫ tan𝑎𝑥 𝑑𝑥 = ∫
sin𝑎𝑥

cos𝑎𝑥
𝑑𝑥 = 

= |
let    𝑢 = cos𝑎𝑥            

then 𝑑𝑢 = −𝑎 sin𝑎𝑥 𝑑𝑥
| = 

= −
1

𝑎
∫

𝑑𝑢

𝑢
= −

1

𝑎
ln|𝑢| + 𝐶 = 

= −
1

𝑎
ln|cos𝑎𝑥| + 𝐶 
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As additional special cases we can add these formulas to the list of basic integral formulas: 

∫ 𝐬𝐢𝐧𝒂𝒙 𝒅𝒙 = −
𝟏

𝒂
𝐜𝐨𝐬𝒂𝒙 + 𝑪 

∫ 𝐜𝐨𝐬𝒂𝒙 𝒅𝒙 =
𝟏

𝒂
𝐬𝐢𝐧𝒂𝒙 + 𝑪 

∫ 𝐭𝐚𝐧𝒂𝒙 𝒅𝒙 = −
𝟏

𝒂
𝐥𝐧|𝐜𝐨𝐬𝒂𝒙| + 𝑪 

∫ 𝐜𝐨𝐭𝒂𝒙 𝒅𝒙 =
𝟏

𝒂
𝐥𝐧|𝐬𝐢𝐧𝒂𝒙| + 𝑪 

7.3.4.2 Product of sines and cosines 

Here we will look at the integrals of the product of trigonometric functions that have different 

arguments, for instance, 

∫ sin𝑎𝑥 ∙ cos𝑏𝑥 𝑑𝑥 

For simplifying integrals of this kind we can apply the product-to-sum identities 

𝐬𝐢𝐧𝒂𝒙 ∙ 𝐜𝐨𝐬𝒃𝒙 =
𝟏

𝟐
(𝐬𝐢𝐧(𝒂𝒙 + 𝒃𝒙) + 𝐬𝐢𝐧(𝒂𝒙 − 𝒃𝒙)) 

𝐜𝐨𝐬𝒂𝒙 ∙ 𝐜𝐨𝐬𝒃𝒙 =
𝟏

𝟐
(𝐜𝐨𝐬(𝒂𝒙 + 𝒃𝒙) + 𝐜𝐨𝐬(𝒂𝒙 − 𝒃𝒙)) 

𝐬𝐢𝐧𝒂𝒙 ∙ 𝐬𝐢𝐧𝒃𝒙 =
𝟏

𝟐
(𝐜𝐨𝐬(𝒂𝒙 − 𝒃𝒙) − 𝐜𝐨𝐬(𝒂𝒙 + 𝒃𝒙)) 

The substitution takes place after splitting the integral into two parts. 

 

Example 2.1 Compute the integral 

∫ sin5𝑥 ∙ sin2𝑥 𝑑𝑥 

Solution 

                      ∫ sin5𝑥 ∙ sin2𝑥 𝑑𝑥 =
1

2
∫(cos3𝑥 − cos7𝑥)𝑑𝑥 = 

=
1

2
∫ cos3𝑥 𝑑𝑥 −

1

2
∫ cos7𝑥 𝑑𝑥 = 

=
1

6
sin3𝑥 −

1

14
sin7𝑥 + 𝐶 
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7.3.4.3 Powers of trigonometric functions 

In this section we take consider the integrals which include the integer powers of sines and 

cosines. In general form it is written as 

∫ sin𝑛𝑥 ∙ cos𝑚𝑥 𝑑𝑥 

If at least one of the powers is an odd number, we can apply substitution. 

 

Example 3.1 Compute the integral 

∫ cos5𝑥 ∙ sin3𝑥 𝑑𝑥 

Let us notice that both functions have odd powers and the cosine function has bigger power 

than the sine function. Therefore, we will substitute the cosine, but first we split the power of 

the sine into multipliers and then use the trigonometric identity 

𝐬𝐢𝐧𝟐𝒙 + 𝐜𝐨𝐬𝟐𝒙 = 𝟏 

Solution 

                                      ∫ cos5𝑥 ∙ sin3𝑥 𝑑𝑥 = ∫ cos5𝑥 ∙ sin2𝑥 ∙ sin𝑥 𝑑𝑥 = 

= ∫ cos5𝑥 ∙ (1 − cos2𝑥) ∙ sin𝑥 𝑑𝑥 = 

= |
let  𝑢 = cos𝑥

𝑑𝑢 = −sin𝑥 𝑑𝑥
| = 

= − ∫ 𝑢5(1 − 𝑢2)𝑑𝑢 = 

= − ∫ 𝑢5𝑑𝑢 + ∫ 𝑢7𝑑𝑢 = 

= −
𝑢6

6
+

𝑢8

8
+ 𝐶 = −

cos6𝑥

6
+

cos8𝑥

8
+ 𝐶 

 

Example 3.2 Compute the integral 

∫
cot𝑥

sin3𝑥
𝑑𝑥 

Solution 

                                                    ∫
cot𝑥

sin3𝑥
𝑑𝑥 = ∫

cos𝑥

sin𝑥 ∙ sin3𝑥
𝑑𝑥 = 

= ∫
cos𝑥

sin4𝑥
𝑑𝑥 = |

let  𝑢 = sin𝑥
𝑑𝑢 = cos𝑥𝑑𝑥

| = 
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= ∫
𝑑𝑢

𝑢4
= ∫ 𝑢−4𝑑𝑢 =

𝑢−3

−3
+ 𝐶 = 

=
sin−3𝑥

−3
+ 𝐶 = −

1

3sin3𝑥
+ 𝐶 

 

7.3.4.4 Double-angle trigonometric identities 

In the previous section we discussed the methods of integration of sine and cosine functions 

on the integer powers where at least one of the powers is an odd integer. For even cases we 

can apply double-angle identities to eliminate the powers 

𝐬𝐢𝐧𝟐𝒙 =
𝟏 − 𝐜𝐨𝐬𝟐𝒙

𝟐
 

𝐜𝐨𝐬𝟐𝒙 =
𝟏 + 𝐜𝐨𝐬𝟐𝒙

𝟐
 

 

Example 4.1 Compute the integral 

∫ cos2𝑥 𝑑𝑥 

Solution 

                                                   ∫ cos2𝑥 𝑑𝑥 = ∫
1 + cos2𝑥

2
𝑑𝑥 = 

=
1

2
∫ 𝑑𝑥 +

1

2
∫ cos2𝑥 𝑑𝑥 = 

=
1

2
𝑥 +

1

2
∙

1

2
sin2𝑥 + 𝐶 

 

Example 4.2 Compute the integral 

∫ sin4𝑥 𝑑𝑥 

Solution 

                                     ∫ sin4𝑥 𝑑𝑥 = ∫(sin2𝑥)2𝑑𝑥 = 

= ∫ (
1 − cos2𝑥

2
)

2

𝑑𝑥 = 

=
1

4
∫(1 − 2cos2𝑥 + cos22𝑥)𝑑𝑥 
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=
1

4
∫ 𝑑𝑥 −

1

4
∫ 2cos2𝑥 𝑑𝑥 +

1

4
∫

1 + cos4𝑥

2
𝑑𝑥 = 

=
1

4
∫ 𝑑𝑥 −

1

4
∫ cos2𝑥 𝑑2𝑥 +

1

4
∙

1

2
∫ 𝑑𝑥 +

1

4
∙

1

2
∫ cos4𝑥 𝑑𝑥 = 

=
1

4
𝑥 −

1

4
sin2𝑥 +

1

8
𝑥 +

1

8
∙

1

4
sin4𝑥 + 𝐶 = 

=
3

8
𝑥 −

1

4
sin2𝑥 +

1

32
sin4𝑥 + 𝐶 

Notice that in the solution of example 4.2 the double-angle formula is applied repeatedly. 

 

7.3.4.5 Trigonometric substitution 

Here we shall look at more complex integrals where an integrand contains the square root of a 
quadratic expression, for instance, 

∫ 𝑥√4 − 𝑥2𝑑𝑥;    ∫
√𝑥2 − 25

𝑥3
𝑑𝑥 

 
Trigonometric substitution is useful to simplify the integrands. The substitution method is 
based on the trigonometric identity 
 

𝐬𝐢𝐧𝟐𝒙 + 𝐜𝐨𝐬𝟐𝒙 = 𝟏 
 
Dividing the identity by cos2𝑥 we derive a special case 
 

𝐭𝐚𝐧𝟐𝒙 + 𝟏 =
𝟏

𝐜𝐨𝐬𝟐𝒙
 

 
We apply the-above mentioned identities for the following cases 
 

Case 1.   For √𝑎2 − 𝑥2   we substitute  𝑥 = 𝑎sin𝑢   or  𝑥 = 𝑎cos𝑢 

Case 2.   For √𝑎2 + 𝑥2   we substitute  𝑥 = 𝑎tan𝑢 

Case 3.   For √𝑥2 − 𝑎2   we substitute  𝑥 =
𝑎

cos𝑢
 

 

Example 5.1 Compute the integral 

∫ 𝑥√4 − 𝑥2𝑑𝑥 

Solution 

To solve the integral, we use trigonometric substitution and then we change the 
differential to get the integral of the power function. 
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                           ∫ 𝑥√4 − 𝑥2𝑑𝑥 = |
 let  𝑥 = 2sin𝑢,   then  𝑑𝑥 = 2cos𝑢 𝑑𝑢

4 − 𝑥2 = 4 − 4sin2𝑢 = 4cos2𝑢
| = 

= ∫ 2sin𝑢√4cos2𝑢 2cos𝑢  𝑑𝑢 =  

= 8 ∫ cos2𝑢  sin𝑢 𝑑𝑢 = 

= −8 ∫ cos2𝑢 𝑑(cos𝑢) = −8
cos3𝑢

3
+ 𝐶 

Now we return to the function with respect to the argument 𝑥 

                                            cos3𝑢 = cos2𝑢 ∙ cos𝑢 = (1 − sin2𝑢)√1 − sin2𝑢 = 

= | as  𝑥 = 2sin𝑢  follows  1 − sin2𝑢 = 1 −
𝑥2

4
  | = 

= (1 −
𝑥2

4
) √1 −

𝑥2

4
 

The solution of the integral is  

                           ∫ 𝑥√4 − 𝑥2𝑑𝑥 = −8
cos3𝑢

3
+ 𝐶 = 

= −
8

3
(√1 −

𝑥2

4
)

3

+ 𝐶 = 

= −
(√4 − 𝑥2)

3

3
+ 𝐶 

 

Example 5.2 Compute the integral 

∫
√𝑥2 − 25

𝑥3
𝑑𝑥 

Solution 

               ∫
√𝑥2 − 25

𝑥3
𝑑𝑥 = | let  𝑥 =

5

cos𝑢
   then   𝑑𝑥 =

5sin𝑢

cos2𝑢
𝑑𝑢  

𝑥2 − 25 = 25tan2𝑢

| = 

= ∫
√25tan2𝑢 ∙ cos3𝑢

125

5sin𝑢

cos2𝑢
𝑑𝑢  = 

=
1

5
∫ tan𝑢 ∙ cos𝑢 ∙ sin𝑢 𝑑𝑢 = 

=
1

5
∫ sin2𝑢 𝑑𝑢 =

1

10
∫(1 − cos2𝑢)𝑑𝑢 = 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

60  

=
1

10
(𝑢 −

1

2
sin2𝑢) + 𝐶 = 

= |as  cos𝑢 =
5

𝑥
   we get sin2𝑢 = 2 ∙

5

𝑥
√1 −

25

𝑥2
=

10

𝑥2
√𝑥2 − 25| = 

=
1

10
(arccos

5

𝑥
−

5

𝑥2
√𝑥2 − 25) + 𝐶 

Comment. The following formula is applied to expand the function sin2𝑢 

𝐬𝐢𝐧𝟐𝒙 = 𝟐𝐬𝐢𝐧𝒙 𝐜𝐨𝐬𝒙 

 

7.3.4.6 Exercises 

Compute the integrals 

𝟏.  ∫ sin12𝑥 𝑑𝑥 

𝟐.  ∫ cot
3𝑥

4
𝑑𝑥 

𝟑.  ∫ sin5𝑥 ∙ cos4.5𝑥 𝑑𝑥 

𝟒.  ∫ sin11𝑥 ∙ cos𝑥 𝑑𝑥 

𝟓.  ∫
cos3𝑥

sin5𝑥
𝑑𝑥 

𝟔.  ∫ 8(1 − cos2𝑥)𝑑𝑥 

2. Apply trigonometric substitution 

       ∫ √1 − 𝑥2 𝑑𝑥 

 

7.3.4.7 Solutions 

𝟏.  ∫ sin12𝑥 𝑑𝑥 

Solution 

                                  ∫ sin12𝑥 𝑑𝑥 =
1

12
∫ sin12𝑥 𝑑12𝑥 = 

= −
1

12
cos12𝑥 + 𝐶 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

61  

 

𝟐. ∫ cot
3𝑥

4
𝑑𝑥 

Solution 

                                     ∫ cot
3𝑥

4
𝑑𝑥 = ∫

cos
3𝑥
4

sin
3𝑥
4

𝑑𝑥 = 

= |
𝑢 = sin

3𝑥

4

𝑑𝑢 =
3

4
cos

3𝑥

4
𝑑𝑥

| = 

=
4

3
∫

𝑑𝑢

𝑢
=

4

3
ln|𝑢| + 𝐶 = 

=
4

3
ln |sin

3𝑥

4
| + 𝐶 

 

𝟑.  ∫ sin5𝑥 ∙ cos4.5𝑥 𝑑𝑥 

Solution 

                  ∫ sin5𝑥 ∙ cos4.5𝑥 𝑑𝑥 =
1

2
∫(sin9.5𝑥 + sin0.5𝑥)𝑑𝑥 = 

=
1

2
∙

2

19
∫ sin9.5𝑥 𝑑9.5𝑥 +

1

2
∙ 2 ∫ sin0.5𝑥 𝑑0.5𝑥 = 

= −
1

19
cos9.5𝑥 − cos0.5𝑥 + 𝐶 

 

𝟒.  ∫ sin11𝑥 ∙ cos𝑥 𝑑𝑥 

Solution 

                        ∫ sin11𝑥 ∙ cos𝑥 𝑑𝑥 = |
𝑢 = sin𝑥

𝑑𝑢 = cos𝑥 𝑑𝑥
| = 

= ∫ 𝑢11𝑑𝑢 =
𝑢12

12
+ 𝐶 = 

=
sin12𝑥

12
+ 𝐶 
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𝟓.  ∫
cos3𝑥

sin5𝑥
𝑑𝑥 

Solution 

                                     ∫
cos3𝑥

sin5𝑥
𝑑𝑥 = ∫

(1 − sin2𝑥)cos𝑥

sin5𝑥
𝑑𝑥 = 

= |
𝑢 = sin𝑥

𝑑𝑢 = cos𝑥 𝑑𝑥
| = ∫

1 − 𝑢2

𝑢5
𝑑𝑢 = 

= ∫ 𝑢−5 𝑑𝑢 − ∫ 𝑢−3 𝑑𝑢 = 

=
𝑢−4

−4
−

𝑢−2

−2
+ 𝐶 = 

= −
1

4sin4𝑥
+

1

2sin2𝑥
+ 𝐶 

 

𝟔.  ∫ 8(1 − cos2𝑥)𝑑𝑥 

Solution 

                       ∫ 8(1 − cos2𝑥)𝑑𝑥 = 8 ∫ sin2𝑥  𝑑𝑥 = 

= 4 ∫(1 − cos2𝑥) 𝑑𝑥 = 

= 4 ∫ 𝑑𝑥 − 2 ∫ cos2𝑥 𝑑2𝑥 = 

= 4𝑥 − 2sin2𝑥 + 𝐶 

 

7. Apply trigonometric substitution 

       ∫ √1 − 𝑥2 𝑑𝑥 

Solution 

                                ∫ √1 − 𝑥2 𝑑𝑥 = |
let  𝑥 = sin𝑢

𝑑𝑥 = cos𝑢 𝑑𝑢
| = 

= ∫ √1 − sin2𝑢 cos𝑢 𝑑𝑢 = 

= ∫ cos𝑢 ∙ cos𝑢 𝑑𝑢 = ∫
1 + cos2𝑢

2
 𝑑𝑢 = 
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=
1

2
∫ 𝑑𝑢 +

1

4
∫ cos2𝑢 𝑑2𝑢 = 

=
1

2
𝑢 +

1

4
sin2𝑢 + 𝐶 = 

= |
𝑢 = arcsin𝑥                           

sin2𝑢 = 2sin𝑢 cos𝑢 = 2𝑥√1 − 𝑥2
| = 

=
1

2
arcsin𝑥 +

1

2
𝑥√1 − 𝑥2 + 𝐶 

 

  



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

64  

7.4 Definite Integrals 

 

DETAILED DESCRIPTION: 

This chapter introduces the definite integral. The description starts with the question: how to 

calculate the area of a region that is bounded by a curve and straight lines? The method of 

approximate calculation is discussed. Then this method is generalised and the definition of the 

definite integral is formulated. Basic properties and the Newton-Leibniz formula are presented 

for calculations of integrals. For students, we can recommend the “Integral Calculator” 

https://www.integral-calculator.com/. This software shows the solution of an integral step by step 

and comes with an interactive graph of integrand and antiderivative. With a help of such 

software students can check their individual solutions of the task. The graphs can be 

constructed using free software GeoGebra Classic; DESMOS Graphing Calculator, and Microsoft 

Excel. 

 
AIM: Learn the definition of the definite integral as the limit of a sum. 

 

Learning Outcomes 

1. Understand the meaning of the definite integral 

2. Understand and apply the rules for calculating definite integrals 

Prior Knowledge: basic rules of integration and differentiation; knowledge of the properties of 

elementary functions and their graphs; algebra and trigonometry formulas. 

Relationship to real maritime problems: Definite integrals have a wide range of applications. 

With the help of definite integrals, it is possible to calculate the area of different shapes, 

volumes of solids, and to solve other geometric problems. Definite integrals are used for various 

calculations of constructions in shipbuilding. Integrals are applied in the theory of stability, in 

electrical engineering, in theory of cargo transport, in economics, in classical signal theory, and 

in other specialities. 

Content 

1. Statement of area problem 

2. Definition of the definite integral 

3. Properties of the definite integral 

4. Calculation of a definite integral 

5. Exercises 

6. Solutions 

  

https://www.integral-calculator.com/
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7.4.1 Statement of area problem 

From the results of Euclidean geometry, we know how to calculate the area of rectangle, 
triangle, circle and other simple plane figures. If the polygon is given, its area can be found by 
subdividing the polygon into a finite number of non-overlapping triangles. It is a different case 
we have if we need to calculate the area of a region enclosed by an arbitrary curve. 

The example that we will solve is about calculating the area of a region that is placed in the 
Cartesian coordinate system. 

Example 1.1. Find the area of the region enclosed by the parabola 𝑦 = 𝑥2, two vertical straight 

lines 𝑥 = 0 and 𝑥 = 2.4, and 𝑥-axis 𝑦 = 0. 

Solution 

We can calculate the area of the region approximately. Let us subdivide the interval 

[0, 2.4] into parts of equal length. For any such subinterval we construct a rectangle 

whose height is equal to the value of the given function at the endpoint of the chosen 

subinterval: 

 

Figure 1.1 

The interval [0;  2.4] is 2.4 units long (see figure 1.1). Every subinterval is 0.4 units long. We can 

calculate the area of all rectangles 

0.4 ∙ 0.42 + 0.4 ∙ 0.82 + 0.4 ∙ 1.22 + 0.4 ∙ 1.62 + 0.4 ∙ 22 + 0.4 ∙ 2.42 = 5.824 sq. units 

Figure 1.1 shows that the calculated area of rectangles is larger than the area of the region that 

we need to find. Subdividing the interval  [0, 2.4] into shorter subintervals will make the error 

of calculations smaller. If the length of the subinterval is 0.01, we get 
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0.01(0.012 + 0.022 + 0.032 + ⋯ + 2.42) ≈ 4.63684 square units 

It is useful to do this very long summation of 261 addends by a software program, for instance, 

by Microsoft Excel. Thus, we can subdivide the interval [0, 2.4] into more and more detail, thus 

reducing the error. Anyway, we need to find the correct answer.  

 

7.4.2 Definition of the definite integral 

An arbitrary continuous function 𝑦 = 𝑓(𝑥) is defined on the closed interval [𝑎, 𝑏]. The task is 
to calculate area S of the region between the curve determined by the function, 𝑥-axis, and two 
vertical straight lines 𝑥 = 𝑎,   𝑥 = 𝑏 (see figure 2.1). 

We choose a set of points inside the interval [𝑎, 𝑏], say 

{𝑥1 = 𝑎, 𝑥2, 𝑥3, … , 𝑥𝑛 = 𝑏}, where 

𝑥1 <  𝑥2 < 𝑥3 < ⋯ < 𝑥𝑛 

We call this set of points a partition of interval [𝒂, 𝒃] into n subintervals [𝑥𝑖−1, 𝑥𝑖], where                     

𝑖 = 1,2, 3, … , 𝑛. The length of any subinterval is  

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 

 

Figure 2.1 

We chose an inner point 𝑐𝑖 in every interval 𝑐𝑖 ∈ [𝑥𝑖−1, 𝑥𝑖], where 𝑖 = 1, 2, 3, … , 𝑛 and 

construct the rectangle with side length ∆𝑥𝑖 and 𝑓(𝑐𝑖) (see figure 2.2). 
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Figure 2.2 

Now we compute the area of every rectangle and calculate their sum. The sum of all areas can 

be written using a sigma notation 

𝑓(𝑐1)∆𝑥1 + 𝑓(𝑐2)∆𝑥2 + ⋯ 𝑓(𝑐𝑛)∆𝑥𝑛 = ∑ 𝑓(𝑐𝑖)∆𝑥𝑖

𝑛

𝑖=1

 

The sum expresses the approximate value of the area under the curve determined by the 

function 𝑓(𝑥) over the interval [𝑎, 𝑏].  If we make the partition of this interval into smaller and 

smaller parts, so that the length of the longest subinterval tends to zero 

max∆𝑥𝑖 → 0, 

then the difference between the sum and the area S of the given region will decrease. Taking 

the limit, we can calculate the precise value of area S 

𝑆 = lim
max∆𝑥𝑖→0

∑ 𝑓(𝑐𝑖)∆𝑥𝑖

𝑛

𝑖=1

 

Definition. If the limit 𝑆 exists at any partition of the interval [𝑎, 𝑏] and any selection of inner 

points 𝑐𝑖, then we call the limit the definite integral of the function 𝑓(𝑥) on the interval [𝑎, 𝑏]. 

The definite integral is denoted by the symbol 

𝐥𝐢𝐦
𝐦𝐚𝐱∆𝒙𝒊→𝟎

∑ 𝒇(𝒄𝒊)∆𝒙𝒊

𝒏

𝒊=𝟏

= ∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

 

 

If the limit exists, we say that the function 𝑓(𝑥) is integrable on interval [𝑎, 𝑏].  

The sign ʃ is called the integral sign, it resembles the letter S since it represents the limit 

of the sum. 

Numbers 𝑎 and 𝑏 are called the limits of integration, 𝑎 is the lower limit, and 𝑏 is the 

upper limit. 
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The function 𝑓(𝑥) is called integrand; 𝑥 is the variable of integration. 

𝑑𝑥 is the differential of 𝒙. 

The variable 𝑥 can be replaced with any other variable without changing the value of the 

integral 

∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

= ∫ 𝒇(𝒕)𝒅𝒕

𝒃

𝒂

 

 

Example 2.1 Find the area of the region bounded by 𝑓(𝑥) = 1, 𝑥 = 𝑎, 𝑥 = 𝑏, 𝑦 = 0. 

Solution 

The area of the given region can be calculated by the integral 

∫ 1 ∙ 𝑑𝑥

𝑏

𝑎

 

Described region is bounded by straight lines that define a rectangle (see figure 2.3). 

 

Figure 2.3 

The area of this rectangle is equal to the value of the integral 

∫ 𝑑𝑥

𝑏

𝑎

= (𝑏 − 𝑎) ∙ 1 = 𝑏 − 𝑎   square units 

 

7.4.3 Properties of the definite integral 

Some of the most important properties of definite integrals are included in the following list. 
Most of the properties listed below can be directly deduced from the definition of the definite 
integral. 

Let functions 𝑓(𝑥) and 𝑔(𝑥) be continuous and differentiable on the interval [𝑎, 𝑏], then 
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𝟏. ∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑎

= 0 

𝟐. ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

= − ∫ 𝑓(𝑥) 𝑑𝑥

𝑎

𝑏

 

𝟑.  ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = ∫ 𝑓(𝑥)

𝑐

𝑎
𝑑𝑥 + ∫ 𝑓(𝑥)

𝑏

𝑐
𝑑𝑥 , where 𝑐 is a particular constant. 

𝟒. ∫ (𝑐𝑓(𝑥) + 𝑘𝑔(𝑥))
𝑏

𝑎
𝑑𝑥 = 𝑐 ∫ 𝑓(𝑥) 𝑑𝑥

𝑏

𝑎
+ 𝑘 ∫ 𝑔(𝑥)

𝑏

𝑎
𝑑𝑥, where 𝑐 and 𝑘 are 

particular constants. 

5. If 𝑓(𝑥) ≤ 𝑔(𝑥) for all arguments 𝑥 ∈ [𝑎, 𝑏], then  ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 ≤ ∫ 𝑔(𝑥)

𝑏

𝑎
𝑑𝑥 

6. For all arguments 𝑥 ∈ [𝑎, 𝑏]  is true |∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥| = ∫ |𝑓(𝑥)|

𝑏

𝑎
𝑑𝑥 

7. If the integral has symmetric limits and the function 𝑓(𝑥) is an odd function 

(𝑓(−𝑥) = −𝑓(𝑥)), then ∫ 𝑓(𝑥)
𝑎

−𝑎
𝑑𝑥 = 0 

8. If the integral has symmetric limits and the function 𝑓(𝑥) is an even function 

(𝑓(−𝑥) = 𝑓(𝑥)), then ∫ 𝑓(𝑥)
𝑎

−𝑎
𝑑𝑥 = 2 ∫ 𝑓(𝑥)

𝑎

0
𝑑𝑥 

Other properties present methods of evaluation of the definite integral. 

𝟗.  𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎), where 𝑚 is the minimum value of the 

function 𝑓(𝑥) in the interval [𝑎, 𝑏], 𝑀 is the maximum value in the interval [𝑎, 𝑏]. 

The 10th property is called the Mean value theorem. 

𝟏𝟎.  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑓(𝑐)(𝑏 − 𝑎), where 𝑐 ∈ [𝑎, 𝑏]. 

By applying the Mean value theorem, we can calculate the average value of an integrable 

function 𝑓(𝑥) on the interval [𝑎, 𝑏]: 

𝟏

𝒃 − 𝒂
∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

 

 

7.4.4 Calculation of the definite integral  

The Newton–Leibniz formula. If the function 𝑓(𝑥) is continuous on the interval [𝑎, 𝑏] and the 
function 𝐹(𝑥) is the antiderivative of 𝑓(𝑥), then 
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∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

= 𝑭(𝒃) − 𝑭(𝒂) 

How to apply this formula? First, we need to compute the corresponding indefinite integral  

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶, 

and then calculate the values of the antiderivative at the upper limit of integral and at its lower 

limit, and subtract them 

𝐹(𝑏) + 𝐶 − (𝐹(𝑎) + 𝐶) = 𝐹(𝑏) + 𝐶 − 𝐹(𝑎) − 𝐶 = 𝐹(𝑏) − 𝐹(𝑎) 

Calculation shows that we can omit the constant C of integration. Therefore, we will expand 

the Newton – Leibniz formula with an evaluation symbol (vertical line segment) 

∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

= 𝑭(𝒙)|
𝒃

𝒂
= 𝑭(𝒃) − 𝑭(𝒂) 

Now we can precisely calculate the value of the region defined in example 1.1. We calculate 

the integral 

∫ 𝑥2𝑑𝑥 =
𝑥3

3

2.4

0

|

2.4

0

=
2.43

3
− 0 = 4.608   sq. units 

  

Example 4.1 

Application of the Newton – Leibniz formula 

∫ 2𝑥𝑑𝑥

3

1

= 𝑥2|
3

1
= 32 − 1 = 8 

 

Example 4.2 Compute the integral 

∫(3 + √𝑥)

4

1

𝑑𝑥 

Solution 

Here we use property 4 of definite integrals in the solution  

                                ∫(3 + √𝑥)

4

1

𝑑𝑥 = ∫ 3

4

1

𝑑𝑥 + ∫ √𝑥

4

1

𝑑𝑥 = 
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= (3𝑥 +
𝑥

3
2

3
2

)|
4

1
= 

= 3(4 − 1) +
2

3
(√43 − 1) = 

= 9 +
2

3
∙ 7 = 13

2

3
 

 

Example 4.3 Compute the integral 

∫
1 − cos2𝜑

2

𝜋
2

0

𝑑𝜑 

Solution 

To solve this integral we change the differential 

∫
1 − cos2𝜑

2

𝜋
2

0

𝑑𝜑 =
1

2
∫ 𝑑𝜑

𝜋
2

0

−
1

4
∫ cos2𝜑 𝑑(2𝜑)

𝜋
2

0

=
𝜑

2 |
|

𝜋

2

0

−
1

4
sin2𝜑|

|

𝜋

2

0

= 

=
𝜋

4
−

1

4
sin𝜋 − (0 − sin0) =

𝜋

4
 

 

Example 4.4 Compute the integrals 

∫ 𝑥2

1

−1

𝑑𝑥 + ∫ √𝑥43
∙ 𝑥

2
3

2

1

𝑑𝑥 

Solution 

We apply property 3 to simplify the task 

         ∫ 𝑥2

1

−1

𝑑𝑥 + ∫ √𝑥43
∙ 𝑥

2
3

2

1

𝑑𝑥 = ∫ 𝑥2

1

−1

𝑑𝑥 + ∫ 𝑥2

2

1

𝑑𝑥 = 

= ∫ 𝑥2

2

−1

𝑑𝑥 =
𝑥3

3
|

2

−1
=

8

3
+

1

3
= 3 
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Example 4.5 

∫ sin52𝑥

𝜋

−𝜋

𝑑𝑥 = 0, 

while the integrand is an odd function (see property 7). 

 

Example 4.6  

Calculate the average value of the function 𝑓(𝑥) = tan2𝑥 over the interval [0,
𝜋

4
]. 

Solution 

We apply the mean value theorem 

1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

The length of interval is  

𝑏 − 𝑎 =  
𝜋

4
 

We calculate the average value of the function 

                                               
1

 
𝜋
4

∫ tan2𝑥

𝜋
4

0

𝑑𝑥 =
4

𝜋
∫

sin2𝑥

cos2𝑥

𝜋
4

0

𝑑𝑥 = 

=
4

𝜋
∫

1 − 𝑐𝑜𝑠2𝑥

cos2𝑥

𝜋
4

0

𝑑𝑥 = 

=
4

𝜋
∫

1

cos2𝑥

𝜋
4

0

𝑑𝑥 −
4

𝜋
∫ 1

𝜋
4

0

𝑑𝑥 =
4

𝜋
(tan𝑥 − 𝑥)||

𝜋

4

0

= 

=
4

𝜋
(1 −

𝜋

4
) =

4

𝜋
− 1 

 

Example 4.7. Application of integrals in real situations 

The bananas storage temperature in cargo holds must be between 13.3 and 13.6 degrees 

Celsius. The temperature recorded during a half of a day followed the curve 

𝑓(𝑡) = 0.001𝑡3 − 0.01𝑡2 + 13.4 
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where 𝑡 is a number of hours (0 ≤ 𝑡 ≤ 12). What is the average temperature in the cargo holds 

during this time period? 

Solution. The average temperature can be calculated using the mean value theorem for 

integrals. If the function 𝑦 = 𝑓(𝑥) is integrable on the interval [𝑎, 𝑏] then the mean value of 

this function on the interval [𝑎, 𝑏] is 

𝟏

𝒃 − 𝒂
∫ 𝒇(𝒙) 𝒅𝒙

𝒃

𝒂

 

The given interval for variable 𝑡 is here [0, 12]. Then the mean value of the function we will 
calculate in the following way 

                           𝑓𝑚𝑒𝑎𝑛 =
1

12−1
∫ (0.001𝑡3 − 0.01𝑡2 + 13.4)

12

1
𝑑𝑥 = 

=
1

11
(0.001 ∙

𝑡4

4
− 0.01 ∙

𝑡3

3
+ 13.4𝑡)|

12

1
= 

=
1

11
(5.184 − 5.76 + 160.8 − 0.000025 + 0.0333 − 13.4) ≈ 

≈ 13.35 (℃)  

Answer. The average temperature in the cargo holds is 13.35 ℃, it is within acceptable limits. 

 

 

7.4.5 Exercises 

Compute the integrals 

𝟏.  ∫(𝑥4 − 𝑥3)

2

0

𝑑𝑥 

𝟐.  ∫ sin𝑥 𝑑𝑥

0

−
𝜋
4

 

𝟑.  ∫
𝑑𝑡

√4 − 𝑡2

1

−1

 

𝟒.  ∫
23𝑥

7
𝑑𝑥

1
3

0
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𝟓.  ∫
2𝑑𝑥

𝑥 + 3

7

−2

 

 

7.4.6 Solutions 

𝟏.  ∫(𝑥4 − 𝑥3)

2

0

𝑑𝑥 

Solution 

                              ∫(𝑥4 − 𝑥3)

2

0

𝑑𝑥 = (
𝑥5

5
−

𝑥4

4
)|

2

0
 

=
32

5
−

16

4
= 2.4 

 

𝟐.  ∫ sin𝑥 𝑑𝑥

0

−
𝜋
4

 

Solution 

                                       ∫ sin𝑥𝑑𝑥

0

−
𝜋
4

= −cos𝑥|

0

−
𝜋

4

= 

= −cos0 + cos (−
𝜋

4
) = 

= −1 +
√2

2
 

 

𝟑.  ∫
𝑑𝑡

√4 − 𝑡2

1

−1

 

Solution 

                                     ∫
𝑑𝑡

√4 − 𝑡2

1

−1

= arcsin
𝑡

2
|

1

−1

= 
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= arcsin
1

2
− arcsin (−

1

2
) = 

=
𝜋

6
+

𝜋

6
=

𝜋

3
 

We calculate the value of the integral according to the odd property of the function 

arcsin𝑥. 

 

𝟒.  ∫
23𝑥

7
𝑑𝑥

1
3

0

 

Solution 

                                         ∫
23𝑥

7
𝑑𝑥

1
3

0

=
1

7
∙

1

3
∫ 23𝑥𝑑(3𝑥)

1
3

0

=
1

27
∙

23𝑥

ln2||

1

3

0

= 

=
2

27ln2
−

1

27ln2
=

1

27ln2
 

 

Here is another calculation method using the properties of powers and logarithms 

                                         ∫
23𝑥

7
𝑑𝑥

1
3

0

=
1

7
∫ 8𝑥𝑑𝑥

1
3

0

=
1

7
∙

8𝑥

ln8||

1

3

0

= 

=
1

7
∙

√8
3

ln8
−

1

7
∙

1

ln8
= 

=
2

7 ∙ 3ln2
−

1

7 ∙ 3ln2
=

1

27ln2
 

 

𝟓.  ∫
2𝑑𝑥

𝑥 + 3

7

−2

 

Solution 

                                          ∫
2𝑑𝑥

𝑥 + 3
= 2 ∫

𝑑(𝑥 + 3)

𝑥 + 3
= 2ln|𝑥 + 3|

7

−2

|

7

−2

7

−2

= 

= 2ln10 − 2ln1 = 2ln10 
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7.5 Some Methods for Calculation of the Definite Integral 

 

DETAILED DESCRIPTION: 

The basic rules for calculation of the definite integral were discussed in the previous section. In 

this section we present methods of integration of composite functions and the method of 

integration by parts for the definite integral. 

AIM: to introduce certain methods of calculation of the definite integral if the integrand is non-

trivial.  

 

Learning Outcomes: 

Students can evaluate different definite integrals using various integration methods  

 

Prior Knowledge:  basic rules of integration and differentiation; methods of integration of 

indefinite integrals; the Newton-Leibniz formula.  

Relationship to real maritime problems: Definite integrals have a wide range of applications. 

With the help of definite integrals, it is possible to calculated the area of various shapes; the 

volumes of solids, and to solve other geometric problems. Definite integrals are used for 

different calculations of constructions in shipbuilding. Integrals are applied in the theory of 

stability, in electrical engineering, in the theory of cargo transport, in economics, in classical 

signal theory, and in other specialities. 

Content 

1. Integration by parts 

2. Substitution method for the definite integral 

3. Exercises 

4. Solutions 

 

7.5.1  Integration by parts 

Suppose that we have an integral that can be integrated by parts. We can find the antiderivative 
part by part according the formula for indefinite integrals. Let us recall it 

∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 

Following the method for integration of the definite integral, we need to find the antiderivative 

and to apply the Newton-Leibniz formula as follows 

∫ 𝑢𝑑𝑣

𝑏

𝑎

= (𝑢𝑣 − ∫ 𝑣𝑑𝑢)|

𝑏

𝑎
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or 

∫ 𝒖𝒅𝒗

𝒃

𝒂

= 𝒖𝒗|

𝒃

𝒂

− ∫ 𝒗𝒅𝒖

𝒃

𝒂

 

 

Example 1.1  Find the integral 

∫ 𝑥𝑒𝑥𝑑𝑥

2

0

 

Solution 

                           ∫ 𝑥𝑒𝑥𝑑𝑥

2

0

= |
let  𝑢 = 𝑥,   𝑑𝑣 = 𝑒𝑥𝑑𝑥

𝑑𝑢 = 𝑑𝑥,    𝑣 = 𝑒𝑥
| = 

= 𝑥𝑒𝑥 |
2

0
− ∫ 𝑒𝑥𝑑𝑥

2

0

= 

= 2 ∙ 𝑒2 − 0 − 𝑒𝑥 |
2

0
= 

= 2𝑒2 − 𝑒2 + 𝑒0 = 𝑒2 + 1 

 

Example 1.2  Find the integral 

∫
ln𝑥

√𝑥

𝑒2

4

𝑑𝑥 

Solution 

                           ∫
ln𝑥

√𝑥

𝑒2

4

𝑑𝑥 = ||
let  𝑢 = ln𝑥,   𝑑𝑣 =

𝑑𝑥

√𝑥

𝑑𝑢 =
1

𝑥
𝑑𝑥, 𝑣 = 2√𝑥

|| = 

= 2√𝑥ln𝑥 |
𝑒2

4

− 2 ∫
√𝑥

𝑥

𝑒2

4

𝑑𝑥 = 

= 2√𝑒2ln(𝑒2) − 2 ∙ 2ln4 |
𝑒2

4

− 2 ∙ 2√𝑥 |
𝑒2

4

= 

= 4𝑒 − 4ln4 − 4√𝑒2 + 8 = 8 − 4ln4 
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7.5.2 Substitution method for the definite integral 

Let us recall the substitution method for indefinite integrals. If the integrand contains a 
composite function multiplied by the derivative of its argument, we can simplify the notation 
of the integral by introducing a new argument 

∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 = ∫ 𝑓(𝑢)𝑑𝑢 

The indefinite integral represents a set of antiderivatives 𝐹(𝑥) + 𝐶. The value of a definite 

integral is numerical. Since the definite integral has limits of integration defined by the interval 

[𝑎, 𝑏] with respect to the argument 𝑥, the introduced argument 𝑢 belongs to a new interval 

[𝛼, 𝛽]. The case is expressed precisely by the following theorem: 

Theorem. Suppose that the function 𝑔(𝑥) is a differentiable function on the interval [𝑎, 𝑏], and 

satisfies 𝑔(𝑎) = 𝛼  and 𝑔(𝑏) = 𝛽. Suppose that the function 𝑓(𝑥) is continuous on the range 

of 𝑔(𝑥). Then by performing the substitution 𝑢 = 𝑔(𝑥) it follows 

∫ 𝒇(𝒈(𝒙))𝒈′(𝒙)𝒅𝒙

𝒃

𝒂

= ∫ 𝒇

𝜷

𝜶

(𝒖)𝒅𝒖 

 

Example 2.1 Find the integral 

∫ cos𝑥 𝑒sin𝑥

𝜋
2

0

𝑑𝑥 

Solution 

                             ∫ cos𝑥 𝑒sin𝑥

𝜋
2

0

𝑑𝑥 = |
let  𝑢 = sin𝑥,   𝑑𝑢 = cos𝑥 𝑑𝑥

𝑢1 = sin0 = 0, 𝑢2 = sin
𝜋

2
= 1  

| = 

                                            

= ∫ 𝑒𝑢𝑑𝑢

1

0

= 𝑒𝑢|
1

0
= 𝑒 − 1 

 

Example 2.2 Find the integral 

∫(2 − 8𝑥5)2𝑥4𝑑𝑥

1

1
2
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Solution 

                       ∫(2 − 8𝑥5)2𝑥4𝑑𝑥

1

    
1
2

= |
let  𝑢 = 2 − 8𝑥5,   𝑑𝑢 = −40𝑥4𝑑𝑥

𝑢1 = 1.75,    𝑢2 = −6
| = 

= −
1

40
∫ 𝑢2𝑑𝑢

−6

1.75

=
1

40
∫ 𝑢2𝑑𝑢

1.75

−6

= 

=
1

40
∙

𝑢3

3
|

1.75

−6
=

1

120
(

343

64
− (

−1

216
)) ≈ 0.045 

Solving this integral we reversed the limits of integration. 

 

Example 2.3 Find the integral 

∫
2𝑡3

𝑡2 + 1

2

1

𝑑𝑡 

Solution 

                                      ∫
2𝑡3

𝑡2 + 1

2

1

𝑑𝑡 = ∫
2𝑡 ∙ 𝑡2

𝑡2 + 1

2

1

𝑑𝑡 = 

= |

let  𝑢 = 𝑡2 + 1,   𝑑𝑢 = 2𝑡𝑑𝑡

𝑢1 = 1 + 1 = 2,    𝑢2 = 22 + 1 = 5

𝑡2 = 𝑢 − 1

| = 

= ∫
𝑢 − 1

𝑢
𝑑𝑢

5

2

= ∫ 𝑑𝑢

5

2

− ∫
𝑑𝑢

𝑢

5

2

= (𝑢 − ln𝑢)|
5

2
= 

= 5 − ln5 − 2 + ln2 = 3 − ln2.5 

 

7.5.3 Exercises 

Find the integrals 

𝟏.  ∫(𝑥2 + 1)𝑥

2

0

𝑑𝑥 
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𝟐.  ∫ cot𝜑 𝑑𝜑

𝜋
3

𝜋
4

 

𝟑.  ∫
5arcsin𝑥𝑑𝑥

√1 − 𝑥2

1
2

−
1
2

 

𝟒.  ∫
𝑡3

0.75 + 2𝑡4
𝑑𝑥

1
2

0

 

𝟓.  ∫
4𝑑𝑥

√𝑥(𝑥 + 1)

3

−1

 

 

7.5.4 Solutions 

𝟏.  ∫(𝑥2 + 1)𝑥

2

0

𝑑𝑥 

Solution 

                              ∫(𝑥2 + 1)𝑥

2

0

𝑑𝑥 = |
let  𝑢 = 𝑥2 + 1,   𝑑𝑢 = 2𝑥𝑑𝑥

𝑢1 = 1,   𝑢2 = 5
| = 

=
1

2
∫ 𝑢𝑑𝑢

5

1

=
𝑢2

4
|

5

1
=

25

4
−

1

4
= 6 

 

𝟐.  ∫ cot𝜑 𝑑𝜑

𝜋
3

𝜋
4

 

Solution 

                                      ∫ cot𝜑 𝑑𝜑

𝜋
3

𝜋
4

= ∫
cos𝜑

sin𝜑
𝑑𝜑

𝜋
3

𝜋
4

= 
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= |

let  𝑢 = sin𝜑,   𝑑𝑢 = cos𝜑 𝑑𝜑

𝑢1 =
√2

2
,   𝑢2 =

√3

2

| = 

= ∫
𝑑𝑢

𝑢

√3
2

√2
2

= ln𝑢|
|

√3

2

√2

2

= 

= ln
√3

2
− ln

√2

2
= 0.5ln1.5 

𝟑.  ∫
5arcsin𝑥𝑑𝑥

√1 − 𝑥2

1
2

−
1
2

 

Solution 

                                 ∫
5arcsin𝑥𝑑𝑥

√1 − 𝑥2

0

−
1
2

= ||
let  𝑢 = arcsin𝑥,   𝑑𝑢 =

𝑑𝑥

√1 − 𝑥2

𝑢1 = arcsin (−
1

2
) = −

𝜋

6
,    𝑢2 = 0

|| = 

= ∫ 5𝑢𝑑𝑢

0

−
𝜋
6

=
5𝑢

ln5
|

0

−
𝜋

6

=
1

ln5
−

5−
𝜋
6

ln5
 

 

𝟒.  ∫
𝑡3

0.75 + 2𝑡4
𝑑𝑥

1
2

0

 

Solution 

                         ∫
𝑡3

0.75 − 16 𝑡4
𝑑𝑡

1
2

0

= |
let  𝑢 = 0.75 − 16𝑡4,   𝑑𝑢 = −64𝑡3𝑑𝑡

𝑢1 = 0.75,    𝑢2 = −0.25
| = 

= −
1

64
∫

𝑑𝑢

𝑢
= 

−0.25

0.75

1

64
∫

𝑑𝑢

𝑢
 = 

0.75

−0.25

 

=
1

64
ln𝑢 |

0.75

−0.25
=

1

64
(ln0.75 − ln|−0.25|) = 

=
1

64
(ln0.75 − ln0.25) =

1

64
ln

0.75

0.25
=

ln3

64
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𝟓. ∫
4𝑑𝑥

√𝑥(𝑥 + 1)

3

−1

 

 

Solution 

                                  ∫
4𝑑𝑥

√𝑥(𝑥 + 1)

3

1

= ||
let   𝑢 = √𝑥,    𝑑𝑢 =

𝑑𝑥

2√𝑥

𝑢1 = 1,   𝑢2 = √3

𝑥 = 𝑢2

|| = 

= 4 ∙ 2 ∫
𝑑𝑢

1 + 𝑢2

√3

1

= 8arctan√𝑥|
√3

1

= 

 = 8(arctan√3 − arctan1) = 8 (
𝜋

3
−

𝜋

4
) =

2𝜋

3
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7.6 Improper Integrals 
 

DETAILED DESCRIPTION: 

In this section, we will extend the concept of the definite integral. Special integrals are investigated over infinite 

intervals.  We will introduce two types of improper integrals: integrals with infinite limits and integrals with an 

infinite discontinuity in the region of integration. Such integrals are defined using the notion of the limit. The ways 

of calculation of improper integrals are presented. Examples of convergent and divergent improper integrals are 

discussed. 

The software GeoGebra, DESMOS, Excel are recommended for construction of graphs. To check their solutions 

and for deeper understanding, students can use Definite and Improper Integral Calculator 

(https://www.emathhelp.net/calculators/calculus-2/definite-integral-calculator/) 

AIM: to learn about improper integrals and methods of their evaluation, to understand the 

concepts of convergence and divergence of integrals. 

 

Learning Outcomes: 

1. Acquire the methods of evaluation of improper integrals of type I. 

2. Distinguish the improper integrals of type II and acquire the methods of their 

calculation. 

 

Prior Knowledge: definite integrals; limits; detection of the domain of function; elementary 

functions and their graphs.  

Relationship to real maritime problems: By describing the shape of the hull of a ship 

mathematically, it is possible to research the ship’s wave resistance that can be presented by 

an improper integral. Improper integrals are used to express the electrical potential of a given 

field. A probability density function for a continuous random variable can be described by an 

improper integral. 

Content 

1. Improper integrals with infinite upper limit 

2. Improper integrals with an infinite discontinuity in the region of integration 

3. Exercises 

4. Solutions 

 

7.6.1 Improper integrals with infinite upper limit 

In the previous sections we got acquainted with the definite integral where integrand is defined 
on the closed interval. Let us investigate a continuous function over a left-bounded interval 
[𝑎, ∞) (see figure 1.1). 
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Figure 1.1 

Suppose that function 𝑓(𝑥) is integrable on the whole interval, so we can calculate the value 

of any integral with upper limit B∈ [𝑎, ∞) 

∫ 𝑓(𝑥)𝑑𝑥

𝐵

𝑎

 

By choosing different values of the number B 

𝑎 ≤ 𝐵1 < 𝐵2 < 𝐵3 < ⋯, 

we get a sequence of numbers  

∫ 𝑓(𝑥)𝑑𝑥

𝐵1

𝑎

; ∫ 𝑓(𝑥)𝑑𝑥

𝐵2

𝑎

;  ∫ 𝑓(𝑥)𝑑𝑥;  …

𝐵3

𝑎

 

It can be a convergent or a divergent sequence. 

 

Definition.  The improper integral of type I (or an integral with an infinite upper limit) is a definite 

integral with infinite limits of integration evaluated by the limit 

∫ 𝒇(𝒙)𝒅𝒙

∞

𝒂

= 𝐥𝐢𝐦
𝒃→∞

∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

 

 

If the limit is a finite number, we say that the improper integral converges. If the limit does not 

exist or is infinity (positive or negative), the improper integral diverges. 

The evaluation of an improper integral follows the known rules. We find the corresponding 

antiderivative, apply the Newton-Leibniz formula, and calculate the limit as 𝑏 tends to infinity 

∫ 𝑓(𝑥)𝑑𝑥

∞

𝑎

= lim
𝑏→∞

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim
𝑏→∞

𝐹(𝑥)|
𝑏

𝑎
= lim

𝑏→∞
𝐹(𝑏) − 𝐹(𝑎) 

We will write symbolically 
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∫ 𝒇(𝒙)𝒅𝒙

∞

𝒂

= 𝑭(∞) − 𝑭(𝒂), 

Remembering that 𝐹(∞) means the calculation of a limit. 

Similarly, the improper integral can have an infinite lower limit, or both 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

−∞

;  ∫ 𝑓(𝑥)𝑑𝑥

∞

−∞

 

 

Example 1.1 Evaluate the integral 

∫
𝑑𝑥

𝑥2

∞

0.5

 

Solution 

Let us construct the graph 

 

Figure 1.2 

Figure 1.2 shows that the graph of the given integrand approaches the 𝑥-axis 

asymptotically. Let us evaluate the integral 

                                               ∫
𝑑𝑥

𝑥2

∞

0.5

= lim
𝑏→∞

∫ 𝑥−2

𝑏

0.5

𝑑𝑥 = 

= lim
𝑏→∞

𝑥−1

−1
|

𝑏

0.5
= − lim

𝑏→∞
(

1

𝑥
)|

𝑏

0.5
= 

= − ( lim
𝑏→∞

1

𝑏
− 2) = 2 

Answer The given integral converges to 2. 
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Example 1.2 Evaluate the integral 

∫
𝑑𝑥

1 + 𝑥2

∞

−∞

 

Solution 

The graph of the integrand is 

 

Figure 1.3 

Figure 1.3 demonstrates the graph of an even function; its graph is symmetric with 

respect to the 𝑦-axis. To evaluate this integral we will split it into two integrals with half-

bounded integration limits taking the intermediate value 𝑥 = 0. We will also follow the 

principle of symmetry. 

                                       ∫
𝑑𝑥

1 + 𝑥2

∞

−∞

= lim
𝑎→−∞

∫
𝑑𝑥

1 + 𝑥2

0

𝑎

+ lim
𝑏→∞

∫
𝑑𝑥

1 + 𝑥2

𝑏

0

= 

= 2 lim
𝑏→∞

∫
𝑑𝑥

1 + 𝑥2

𝑏

0

= 2 lim
𝑏→∞

arctan𝑥|
𝑏

0
= 

= 2 lim
𝑏→∞

arctan𝑏 − arctan0 = 2
𝜋

2
= 𝜋 

The graph of function 𝑓(𝑥) = arctan𝑥 has two horizontal asymptotes 𝑦 = −
𝜋

2
 and 𝑦 =

𝜋

2
 (see figure 1.4) 

 

Figure 1.4 
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Answer The given integral converges to the number 𝜋. 

 

Example 1.3 Evaluate the integral 

∫
𝑑𝑥

𝑥

∞

0.2

 

Solution 

                                               ∫
𝑑𝑥

𝑥

∞

0.2

= lim
𝑏→∞

ln𝑥|
𝑏

0.2
= 

= lim
𝑏→∞

ln𝑏 − ln0.2 = ∞ 

The graphs of integrand 𝑓(𝑥) and of antiderivative 𝐹(𝑥) are presented in figure 1.5. 

Function 𝐹(𝑥) = ln𝑥 increases indefinitely. 

 

Figure 1.5 

Answer The given improper integral diverges. 

 

Example 1.4 We would like to escape from the ground of the Earth. What must be the minimum 

velocity to overcome the gravitational force?  

Solution An object with a mass 𝑚 must be moved from the ground of the Earth. The 

object must have enough energy to move arbitrarily far away from Earth into universe. 

It is necessary to calculate the amount of work needed to move it.  

Here are some constants useful for calculation: 

𝑀 ≈ 5.97 ∙ 1024  𝑘𝑔 – the mass of the earth 

𝐺 ≈ 6.67 ∙ 10−11𝑁𝑚2/𝑘𝑔2 – the constant of gravity 

𝑅 ≈ 6.37 ∙ 106 𝑚 – the distance between the centre of the Earth and the centre 

of object 
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We will calculate the energy needed to overcome the force of gravity 

∫
𝑚𝑀𝐺

𝑥2

∞

𝑅

𝑑𝑥 = −
𝑚𝑀𝐺

𝑥
|

∞

𝑅
= 𝑚𝑀𝐺 (−

1

∞
+

1

𝑅
) =

𝑚𝑀𝐺

𝑅
 

The energy needed to move an object is kinetic energy that can be calculated 

𝐸𝑘𝑖𝑛 =
𝑚𝑣2

2
 

So we have the equation 

𝑚𝑣2

2
=

𝑚𝑀𝐺

𝑅
 

Let us calculate the velocity by inserting well known constants in the equation 

𝑣 = √
2𝑀𝐺

𝑅
≈ √

2 ∙ 5.97 ∙ 1024 ∙ 6.67 ∙ 10−11

6.37 ∙ 106
≈ 11.2 𝑚/𝑠 

The result is minimum velocity to overcome the Earth’s pull. It is called escape velocity. 

 

7.6.2 Improper integrals with an infinite discontinuity in the region of 
integration 

Let us investigate the case when the function 𝑓(𝑥) becomes unbounded as its argument 𝑥 
approaches one or both endpoints of the interval [𝑎, 𝑏]. Figure 2.1 presents the function whose 
value tends to infinity when the argument 𝑥 approaches endpoint 𝑏 of the interval. To integrate 
the function over such an interval we will evaluate the one-sided limit.  

Definition. Let function 𝑓(𝑥) be continuous on the interval [𝑎, 𝑏) and be discontinuous at 

endpoint 𝑏 of the interval, the improper integral of type II is defined in the following way 

∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

= 𝐥𝐢𝐦
𝜺→𝟎+

∫ 𝒇(𝒙)𝒅𝒙

𝒃−𝜺

𝒂

 

If the limit exists, we say that the improper integral converges. If the limit does not exist or it is 

infinity, the improper integral diverges. 
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Figure 2.1 

Similarly, if the function is discontinuous at the left endpoint of the interval (see figure 2.2), we 

have 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim
𝜀→0+

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎+𝜀

 

It is necessary to separate the integral into two parts if the function is discontinuous at the 

inner point of the interval (see figure 2.3). The improper integral converges only in the case if 

both its parts converge. 

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

= lim
𝜀→0+

∫ 𝑓(𝑥)𝑑𝑥

𝑐−𝜀

𝑎

+ lim
𝜀→0+

∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐+𝜀

 

 

                  

Figure 2.2                                                              Figure 2.3 
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Example 2.1 Evaluate the integral 

∫
𝑑𝑥

√1 − 𝑥
3

1

0

 

Solution 

                                        ∫
𝑑𝑥

√1 − 𝑥
3

1

0

= lim
𝜀→0+

∫ (1 − 𝑥)−1
3⁄ 𝑑𝑥

1−𝜀

0

= 

= |
let  𝑢 = 1 − 𝑥,   𝑑𝑢 = −𝑑𝑥

𝑢1 = 1,    𝑢2 = 0
| = 

= lim
𝜀→0+

(− ∫ 𝑢−1
3⁄ 𝑑𝑢

0+𝜀

1

) = 

= − lim
𝜀→0+

3

2
𝑢

2
3|

0 + 𝜀

1
= −

3

2
(0 − 1) =

3

2
 

Answer This integral converges to  
3

2
 . 

 

Example 2.2 Evaluate the integral 

∫
2𝑑𝑥

(𝑥 − 1)2

3

0

 

Solution The integrand is not defined at the inner point 𝑥 = 1 of the integration interval. 

It is necessary to split the interval into two parts. 

                                      ∫
2𝑑𝑥

(𝑥 − 1)2

3

0

= ∫
2𝑑𝑥

(𝑥 − 1)2

1

0

+ ∫
2𝑑𝑥

(𝑥 − 1)2

3

1

= 

= lim
𝜀→0+

∫
2𝑑𝑥

(𝑥 − 1)2

1−𝜀

0

+ lim
𝜀→0+

∫
2𝑑𝑥

(𝑥 − 1)2

3

1+𝜀

 

Let us solve these limits separately 

                         lim
𝜀→0+

∫
2𝑑𝑥

(𝑥 − 1)2

1−𝜀

0

= 2 lim
𝜀→0+

−1

𝑥 − 1
|

1 − 𝜀

0
= 

= −2 lim
𝜀→0+

1

−𝜀
+ 1 = ∞ 
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Similarly, the second improper integral tends to infinity. It is not necessary to calculate it, 

as if at least one of the addends tends to infinity, the given integral diverges.  

 

7.6.3 Exercises 

Evaluate the integral and draw the graph of its integrand and of its antiderivative. 

𝟏.  ∫
𝑑𝑥

𝑥ln𝑥

∞

2

 

𝟐.  ∫ 𝑥𝑒−𝑥2
𝑑𝑥

0

−∞

 

𝟑.  ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

∞

−∞

 

𝟒.  ∫
𝑥

√𝑥 + 1
𝑑𝑥

2

−1

 

𝟓.  ∫ tan𝑥 𝑑𝑥

𝜋
2

𝜋
3

 

 

7.6.4 Solutions 

𝟏.  ∫
𝑑𝑥

𝑥ln𝑥

∞

2

 

Solution The graph of the integrand in figure 4.1 demonstrates a decreasing function 

 

Figure 4.1 
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The upper limit of the given integral is infinity. Therefore, the given integral is an 

improper integral of type 1. After the primitive function or antiderivative ln𝑢 is found, 

we calculate the limit. While the logarithmic function is an increasing function, its limit 

is infinite as 𝑥 tends to infinity (see figure 4.2). 

                                             ∫
𝑑𝑥

𝑥ln𝑥

∞

2

= |
let  𝑢 = ln𝑥   then 𝑑𝑢 =

𝑑𝑥

𝑥
𝑢1 = ln2,   𝑢2 = ∞

| = 

= ∫
𝑑𝑢

𝑢
= ln|𝑢|

∞

𝑙𝑛2

|
∞

𝑙𝑛2
= 

= lim
𝑢→∞

ln𝑢 − ln ln2 = ∞ 

 

 

Figure 4.2 

The given improper integral diverges. 

 

𝟐.  ∫ 𝑥𝑒−𝑥2
𝑑𝑥

0

−∞

 

Solution  

Figure 4.3 shows the graph of the integrand (red curve) and of the antiderivative (green 

curve).  Both graphs are symmetric. The integrand function is odd, because its graph is 

symmetric with respect to the origin of coordinate system. Antiderivative is even 

because its graph is symmetric with respect to the 𝑦-axis.  
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Figure 4.3 

Since there is infinity in the lower bound, this is an improper integral of type 1. We 

evaluate the integral by changing the differential, and find the limit. 

                                    ∫ 𝑥𝑒−𝑥2
𝑑𝑥

0

−∞

= −
1

2
∫ 𝑒−𝑥2

𝑑(𝑥2) =

0

−∞

−
1

2
𝑒−𝑥2

|
0

−∞
= 

= −
1

2
(𝑒0 − lim

𝑥→−∞
𝑒−𝑥2

) = 

= −
1

2
(1 − 0) = −

1

2
 

The given integral converges. 

 

𝟑.  ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

∞

−∞

 

Solution 

The integral with both infinite limits is an improper integral of type I. We split it in two 

parts 

∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

∞

−∞

= ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

0

−∞

+ ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

∞

0

 

Both integrals have the same integrand. Therefore, we compute the corresponding 

indefinite integral by completing the full square 

                              ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2
= |

𝑥2 + 2𝑥 + 2 = 𝑥2 + 2𝑥 + 1 + 1 =
= (𝑥 + 1)2 + 1

| = 

= ∫
𝑑(𝑥 + 1)

(𝑥 + 1)2 + 1
= 

= arctan(𝑥 + 1) + 𝐶 
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We use this antiderivative for evaluation of improper integrals, and we apply the odd 

property of arctan𝑥 function 

                               ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

0

−∞

+ ∫
𝑑𝑥

𝑥2 + 2𝑥 + 2

∞

0

= 

=  arctan(𝑥 + 1) |
0

−∞
+ arctan(𝑥 + 1) |

∞

0
= 

= arctan0 − arctan(−∞) + arctan∞ − arctan0 = 

= 2 lim
𝑥→∞

arctan𝑥 = 2
𝜋

2
= 𝜋 

The integral converges. The graphs of both functions are presented in figure 4.4. The 

graph of integrand is in red colour, the graph of antiderivative is green. 

 

Figure 4.4 

 

𝟒.  ∫
𝑥

√𝑥 + 1
𝑑𝑥

2

−1

 

Solution 

We detect the domain of the integrand 

𝑥 > −1 

The function is not defined at the lower point of the integration region; therefore, the 

given integral is an improper integral of type II. The graph of this function is sketched in 

figure 4.5 
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Figure 4.5 

We compute the corresponding indefinite integral by applying substitution 

                                                 ∫
𝑥

√𝑥 + 1
𝑑𝑥 = |

let  𝑥 + 1 = 𝑢2

𝑑𝑥 = 2𝑢𝑑𝑢
| = 

= ∫
𝑢2 − 1

𝑢
2𝑢𝑑𝑢 = 

= 2 ∫(𝑢2 − 1)𝑑𝑢 = 2 (
𝑢3

3
− 𝑢) + 𝐶 = 

= 2 (
√𝑥 + 1

3

3
− √𝑥 + 1) + 𝐶 

Return to the improper integral  

                                 ∫
𝑥

√𝑥 + 1
𝑑𝑥

2

−1

= lim
𝜀→0+

∫
𝑥

√𝑥 + 1
𝑑𝑥

2

−1+𝜀

= 

= lim
𝜀→0+

2 (
√𝑥 + 1

3

3
− √𝑥 + 1)|

2

−1 + 𝜀
= 

= 2
√3

3

3
− 2√3 − 2 lim

𝜀→0+
(

√−1 + 𝜀 + 1
3

3
− √−1 + 𝜀 + 1) = 

= 2
√3

3

3
− 2√3 = 0 

The given improper integral converges as the limit is finite.  

The graph of the antiderivative is presented in figure 4.6. The value of this function at 

the point 𝑥 = 2 is 0, the graph crosses the 𝑥-axis at this point. The extreme value of the 

antiderivative in the given interval is at point 𝑥 = 0. 
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Figure 4.6 

 

𝟓.  ∫ tan𝑥 𝑑𝑥

𝜋
2

𝜋
3

 

Solution 

The tangent function is not defined at the point 𝑥 =
𝜋

2
. We solve the improper integral 

of type II. The graphs of the integrand and the corresponding antiderivative are given in 

figure 4.7. 

We solve the integral by the change of differential 

                                       ∫ tan𝑥𝑑𝑥

𝜋
2

𝜋
3

= ∫
sin𝑥

cos𝑥
𝑑𝑥

𝜋
2

𝜋
3

= 

= − ∫
𝑑(cos𝑥)

cos𝑥
=

𝜋
2

𝜋
3

 

= −ln|cos𝑥| |

𝜋

2
𝜋

3

= 

= − lim
𝜀→0+

ln (cos (
𝜋

2
− 𝜀)) + ln (cos

𝜋

3
) = ∞ 

 

Since the value of the integral is not finite, it is divergent. 
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Figure 4.7 
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7.7 Application of Definite Integrals: Areas of Plane Regions 

 

DETAILED DESCRIPTION: 

Definite integrals are used to solve various problems. One of the usual applications is the 

calculation of the area of a plane region bounded by curves. This chapter presents different 

types of regions and gives the methods to calculate their areas. Formulas of definite integrals 

are given for curves expressed analytically, expressed by parametrical equations, as well as for 

curves given in the polar coordinate system. To construct the curves, the software programs 

GeoGebra Classic or Desmos Graphing Calculator, or others, can be used. Students can check 

their solutions with the integral calculator (https://www.integral-calculator.com/) that also 

constructs graphs of the integrand and the antiderivative. 

AIM: to explore the methods of calculation of the area of plane regions of different types.  

 

Learning Outcomes: 

1. Students understand the geometrical meaning of the definite integral. 

2. Students can calculate the area of plane regions enclosed by curves. 

3. Students distinguish the cases if a region must be divided into two or more parts. 

 

Prior Knowledge: basic rules of integration and differentiation; Newton-Leibniz formula; 

properties of functions; the construction of graphs of functions; algebra and trigonometry 

formulas.   

Relationship to real maritime problems: Calculation of the area of various specific construction 

parts is one of the core questions in shipbuilding. However, the shapes are so complex that 

mostly numerical calculations are used. Calculation of the area of a region is part of solving 

physics problems: for instance, to detect the pressure that is applied to an object it is necessary 

to calculate the area of the object’s surface. 

Content 

1. Area under the graph of a function 

2. Area between two curves 

3. The problem of the compound region 

4. Area under a parametric curve 

5. Curve in a polar coordinate system 

6. Exercises 

7. Solutions 

  

https://www.integral-calculator.com/
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7.7.1 Area under the graph of a function 

The definite integral was introduced as a tool for calculation of the area of a given region. If the 

region is bounded by the graph of a continuous function 𝑓(𝑥) on the interval [𝑎, 𝑏], two vertical 

lines 𝑥 = 𝑎 and 𝑥 = 𝑏, and 𝑥-axis, we can calculate the area 𝑆 under the graph of the given 

function in square units 

𝑺 = ∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

 

Example 1.1 

Calculate the area of the region bounded by the function 𝑦 =  cos𝑥, vertical straight lines  

𝑥 = −
𝜋

3
,   𝑥 =

𝜋

3
, and 𝑥-axis. 

Solution Let us construct the graph (see figure 1.1) and let us express the integral 

 

Figure 1.1 

𝑆 = ∫  cos𝑥 𝑑𝑥

𝜋
3

−
𝜋
3

= 2 ∫  cos𝑥 𝑑𝑥

𝜋
3

0

= 2 sin𝑥||

𝜋

3

0

= 2 sin
𝜋

3
− 0 = √3  sq. units 

We notice that this integral has symmetric integration boundaries and cosine function 

is an even function, so the interval was halved. 

 

Example 1.2  Find the area of the plane region bounded by 𝑦 = (𝑥 − 1)3 + 1,   𝑥 = 0.5, 𝑥 =

2,  and 

     𝑦 = 0. 

Solution The region is bounded by two vertical lines = 0.5, 𝑥 = 2 , 𝑥-axis, and the cubic 

parabola (see figure 1.2). 
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Figure 1.2 

Thus, the area of the region is 

𝑆 = ∫((𝑥 − 1)3 + 1)𝑑𝑥

2

0.5

= ∫(𝑥 − 1)3𝑑(𝑥 − 1)

2

0.5

+ ∫ 𝑑𝑥

2

0.5

= 

        = (
(𝑥 − 1)4

4
+ 𝑥)|

2

0.5
=

1

4
+ 2 −

1

64
− 0.5 ≈ 1.73  sq. units 

 

If the function has a break point that separates the interval of integration into subintervals 

where the function has only positive and only negative values, we need to integrate the 

function separately on every such subinterval, taking the absolute value of the result. 

 

 Example 1.3   Calculate the area of the region enclosed by 𝑓(𝑥) = log2𝑥, 𝑥 = 0.5, 𝑥 = 2,

𝑦 = 0. 

Solution The graph shows that the function has negative values in the interval [0.5, 1] 

and positive values in the interval [1, 2] (see figure 1.3). Therefore, we will separate 

these intervals. 

 

Figure 1.3 

We split the integral into two parts to calculate the area of the region 
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𝑆 = ∫|log2𝑥|𝑑𝑥

2

0.5

= | ∫  log2𝑥𝑑𝑥

1

0.5

| + ∫  log2𝑥𝑑𝑥

2

1

 

Let us evaluate the corresponding indefinite integral by applying the method of 

integration by parts 

∫ log2𝑥𝑑𝑥 = |

let  𝑢 =  log2𝑥,   𝑑𝑣 = 𝑑𝑥

𝑑𝑢 =
𝑑𝑥

𝑥 ln2
,    𝑣 = 𝑥

| = 𝑥 log2𝑥 −
1

 ln2
∫

𝑥𝑑𝑥

𝑥
= 

                      = 𝑥 log2𝑥 −
𝑥

 ln2
+ 𝐶 

Now we use this antiderivative for the calculation of area 𝑆 according to the Newton-

Leibniz formula 

                                         𝑆 = |𝑥 log2𝑥 −
𝑥

 ln2
||

1

0.5
+ (𝑥 log2𝑥 −

𝑥

 ln2
)|

2

1
= 

= | log21 −
1

 ln2
− 0.5 log20.5 +

1

2 ln2
| + 2 log22 −

2

 ln2
−  log21

+
1

 ln2
= 

= |
1

2
−

1

2 ln2
| + 2 −

1

 ln2
≈ |−0.22| + 0.56 ≈ 0.78  sq. units  

 

Example 1.4 At what value of the upper limit 𝑏 is the integral equal to 4? 

∫
𝑑𝑥

4√𝑥

𝑏

1

= 4 

Solution We calculate the integral 

∫
𝑑𝑥

4√𝑥

𝑏

1

=
1

4
∙ 2√𝑥|

𝑏

1
=

1

2
(√𝑏 − 1) 

We solve the equation 

1

2
(√𝑏 − 1) = 4 

√𝑏 − 1 = 8 

√𝑏 = 9;    𝑏 = 81 

Answer The upper limit of the integral should be 𝑏 = 81. 
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7.7.2 Area between two curves 

If functions 𝑓(𝑥) and 𝑔(𝑥) are continuous functions over the interval [𝑎, 𝑏] and 𝑓(𝑥) ≥ 𝑔(𝑥) 

for all arguments 𝑥 ∈ [𝑎, 𝑏] then area 𝑆 of the region between the curves 𝑓(𝑥) and 𝑔(𝑥) in this 

interval is expressed by the integral 

𝑺 = ∫(𝒇(𝒙) − 𝒈(𝒙))𝒅𝒙

𝒃

𝒂

 

 

Figure 2.1 

 

Example 2.2 Find the area of a plane region bounded by two curves 𝑦 = 𝑥2,   𝑦 = 𝑥 + 2 

Solution We construct the graphs of given functions (see figure 2.2). To detect the 

integration interval, we need to calculate the coordinates of the projection of the region 

on the 𝑥-axis. 

 

Figure 2.2 

{
𝑦 = 𝑥2     
𝑦 = 𝑥 + 2
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𝑥2 − 𝑥 − 2 = 0 

The equation has two roots 

𝑥1 = −1,   𝑥2 = 2 

Considering that the parabola is the lower curve, the area is  

                                         𝑆 = ∫(𝑥 + 2 − 𝑥2)

2

−1

𝑑𝑥 = (
𝑥2

2
+ 2𝑥 −

𝑥3

3
)|

2

−1
= 

= 2 + 4 −
8

3
−

1

2
+ 2 −

1

3
= 4.5  sq. units 

 

 

7.7.3 The problem of the compound region 

We will investigate the case of the region bounded by more than two curves. Let it be bounded 

by curves 𝑓(𝑥), 𝑔(𝑥), 𝑧(𝑥) (see figure 3.1). 

 

 

Figure 3.1 

 

There are given two upper functions 𝑔(𝑥) and  𝑧(𝑥) and one lower function 𝑓(𝑥). We 

determine the intersection points of graphs that define two separate regions with different 

intervals of projection [𝑎, 𝑏] and [𝑏, 𝑐] (see figure 3.2). 
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Figure 3.2 

We compose two integrals to solve the problem of the area 

𝑺 = ∫(𝒈(𝒙) − 𝒇(𝒙)) 𝒅𝒙 + ∫(𝒛(𝒙) − 𝒇(𝒙)) 𝒅𝒙

𝒄

𝒃

𝒃

𝒂

 

 

Example 3.1 Calculate the area of a region enclosed by the curve 𝑦 = 𝑥2 − 2𝑥 + 1 and two 

lines           𝑥 + 𝑦 = 3, 𝑦 = 0. 

Solution 

The figure 3.3 shows several closed regions. We find the region that is enclosed by the 

curve and exactly two lines, where one of the lines is the 𝑥-axis (see the coloured 

region). 

 

Figure 3.3 

 Now our solution has the following steps: 

Step 1. Determine the boundaries of integration  

𝑥2 − 2𝑥 + 1 = 0;    𝑥 = 1 

𝑥 + 𝑦 − 3 = 0;    𝑥 = 3 
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The boundaries are given by the interval [1, 3].  

Step 2. 

Calculate the point of intersection of the curve and the line 𝑥 + 𝑦 = 3. 

{
𝑦 = 𝑥2 − 2𝑥 + 1

𝑦 = 3 − 𝑥
 

3 − 𝑥 = 𝑥2 − 2𝑥 + 1 

𝑥2 − 𝑥 − 2 = 0 

The equation has two roots 𝑥 = −1;    𝑥 = 2. The point 𝑥 = 2 belongs to the interval 

[1, 3].  

Step 3. To calculate the area of the region it is necessary to break up the interval of 

boundaries into two parts  

[1, 3] = [1, 2] + [2, 3] 

and set up two integrals of two different upper functions 

𝑆 = ∫(𝑥2 − 2𝑥 + 1) 𝑑𝑥 + ∫(3 − 𝑥)

3

2

2

1

𝑑𝑥 

Step 4. Calculate the area 

                                         𝑆 = ∫(𝑥2 − 2𝑥 + 1) 𝑑𝑥 + ∫(3 − 𝑥)

3

2

2

1

𝑑𝑥 = 

= (
𝑥3

3
− 𝑥2 + 𝑥)|

2

1
+ (3𝑥 −

𝑥2

2
)|

3

2
= 

=
8

3
− 4 + 2 −

1

3
+ 1 − 1 + 9 −

9

2
− 6 + 2 =

5

6
  sq. units 

 

 

Example 3.2 Calculate the area of a region enclosed by 𝑦 = √𝑥,   3𝑥 − 5𝑦 − 12 = 0, 𝑦 = 0. 

We will calculate the area of the given region in two different ways. 

Solution 1 

Step 1. Construct the given region. 
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Figure 3.4 

Step 2. Detect the boundaries of the integrals. Figure 3.4 presents the compound region 

whose area will be calculated as the sum of two integrals. The first integral is defined in 

the interval [0, 4] because the point 𝑥 = 4 is the 𝑥-intercept of the straight line. The 

boundaries of the second integral are [4, 9]. We can find the upper bound x=9 by solving 

the system of equations 

{
𝑦 = √𝑥          

𝑦 =
3𝑥 − 12

5

 

5√𝑥 = 3𝑥 − 12 

25𝑥 = 9𝑥2 − 72𝑥 + 144 

9𝑥2 − 97𝑥 + 144 = 0 

𝑥 = 9;   𝑥 =
16

9
 

Point 𝐵 has coordinates 𝐵(9, 3) 

Step 3. Set up integrals 

                                                        𝑆 = ∫ √𝑥

4

0

𝑑𝑥 + ∫ (√𝑥 −
3𝑥 − 12

5
) 𝑑𝑥

9

4

= 

=
𝑥

3
2⁄

3
2⁄

|
4

0
+

𝑥
3

2⁄

3
2⁄

|
9

4
− (

3𝑥2

10
−

12𝑥

5
)|

9

4
= 

=
2

3
∙ 27 −

3

10
∙ 65 +

12

5
∙ 5 = 10.5  square units 

Solution 2 

We solved the problem by the calculation of two integrals. If we turn the construction 

with 𝑥-axis up, we can express the given functions as functions with respect to the 

argument 𝑦 (see figure 3.5) 
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𝑥 = 𝑦2;     𝑥 =
5𝑦 + 12

3
 

 

Figure 3.5 

Point 𝐵 has coordinates (9, 3) (see figure 3.5). The boundaries on the 𝑦-axis are [0, 3]. 

Therefore, we can set up a simpler integral 

                                        𝑆 = ∫ (
5𝑦 + 12

3
− 𝑦2) 𝑑𝑦

3

0

= (
5𝑦2

6
+ 4𝑦 −

𝑦3

3
)|

3

0
= 

= 5 ∙
9

6
+ 12 − 9 = 10.5  sq. units 

 

7.7.4 Area under a parametric curve 

Parametric equations are used to describe many different types of curves. Circle, ellipse, 

cycloid, and hypocycloid are some of the best-known curves that can be expressed 

parametrically. To calculate the area under the curve, we modify the area formula by 

substitution.  

The area of a region 𝑆 enclosed by function 𝑓(𝑥), two vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏 and 𝑥-axis 

can be calculated by the formula 

𝑺 = ∫ 𝒇(𝒙)𝒅𝒙

𝒃

𝒂

 

If the function is described by 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡) and the parameter 𝑡 runs between 𝑡1 

and 𝑡2 where 

𝑎 = 𝑥(𝑡1);   𝑏 = 𝑥(𝑡2) 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

108  

We substitute 

𝑺 = ∫ 𝒚(𝒕)𝒅(𝒙(𝒕)) = ∫ 𝒚(𝒕)𝒙′(𝒕)𝒅𝒕

𝒕𝟐

𝒕𝟏

𝒕𝟐

𝒕𝟏

 

 

Example 4.1 Calculate the area of an ellipse. 

Solution 

The ellipse is symmetric with respect to its axes. Therefore, we calculate the area of the 

fourth part of the ellipse (see figure 4.1) 

 

Figure 4.1 

Parametric equations of the ellipse are 

{
𝑥 = 𝑎 cos𝑡
𝑦 = 𝑏 sin𝑡 

We calculate 

                                         𝑆 = 4 ∫ 𝑓(𝑥)𝑑𝑥

𝑎

0

= |
let  𝑥 = 𝑎 cos𝑡,    then  𝑑𝑥 = −𝑎 sin𝑡 𝑑𝑡

𝑥1 = 0,   then 𝑡1 =
𝜋

2
;     𝑥2 = 𝑎,   𝑡2 = 0  

| = 

= −4 ∫ 𝑏 sin𝑡 𝑎 sin𝑡 𝑑𝑡

0

𝜋
2

= −4𝑎𝑏 ∫  sin2𝑡 𝑑𝑡

0

𝜋
2

= 

= 4𝑎𝑏 ∫
1 −  cos2𝑡

2
 𝑑𝑡

𝜋
2

0

= 

= 2𝑎𝑏 ∫  𝑑𝑡 − 𝑎𝑏

𝜋
2

0

∫  cos2𝑡 𝑑2𝑡

𝜋
2

0

= 2𝑎𝑏||

𝜋

2

0

− 𝑎𝑏 sin2𝑡||

𝜋

2

0

= 

= 2𝑎𝑏
𝜋

2
= 𝜋𝑎𝑏   sq. units 
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7.7.5 Curve in a polar coordinate system 

The curvilinear sector is given by the function 𝑟 = 𝑟(𝜑) and two rays 𝜑 = 𝛼;   𝜑 = 𝛽. To 

calculate the area of this sector we apply the formula (see figure 5.1) 

𝑺 =
𝟏

𝟐
∫ 𝒓𝟐(𝝋)𝒅𝝋

𝜷

𝜶

 

 

Figure 5.1 

 

Example 5.1 Find the area inside the cardioid 𝑟 = 2 + 2 cos𝜑. 

Solution 

The shape of the given cardioid is represented in figure 5.2 

 

Figure 5.2 

Polar axis is the symmetry line of the cardioid. We create the integral for half of the 

region where the angle changes from 0 to 180°. The area of this region is 

                                                        𝑆 = 2 ∙
1

2
∫(2 + 2 cos𝜑)2𝑑𝜑

𝜋

0

= ∫(4 + 4 cos𝜑 +  cos2𝜑)𝑑𝜑

𝜋

0

= 

= 4 ∫ 𝑑𝜑

𝜋

0

+ 4 ∫  cos𝜑 𝑑𝜑

𝜋

0

+
1

2
∫(1 +  cos2𝜑)𝑑𝜑

𝜋

0

= 
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= (4𝜑 + 4 sin𝜑 +
1

2
𝜑 +

1

4
 sin2𝜑)|

𝜋

0
= 4.5𝜋   sq. units 

 

7.7.6 Exercises 

 

1. Calculate the area of the region between the curve 𝑦 =  sin𝑥 and 𝑥-axis in the interval 

[
𝜋

6
,

5𝜋

4
]. 

2. Calculate the area of a region enclosed by straight lines 𝑦 = 𝑥 and 𝑥 + 2𝑦 − 6 = 0, and 𝑥-
axis. 

3. Calculate the area between two curves 𝑦 = (𝑥 + 2)2 and 𝑦 = 4 − 𝑥2. 

4. Calculate the area enclosed by  𝑦 = 0.5𝑥,   𝑦 = 0.5𝑥√1 + 𝑥2, 𝑥 = −2  and 𝑦-axis.  

5. Calculate the area under one arc of the cycloid 

{
𝑥 = 2(𝑡 −  sin𝑡)
𝑦 = 2(1 −  cos𝑡)

 

6. Calculate the area of one petal of the polar rose 𝑟 = 4 cos3𝜑. 

 

 

7.7.7 Solutions 

1. Calculate the area of the region between the curve 𝑦 =  sin𝑥 and 𝑥-axis in the interval 

[
𝜋

6
,

5𝜋

4
]. 

Solution 

We construct the curve and vertical lines (see figure 7.1). 

 

Figure 7.1 

The function 𝑦 =  sin𝑥 has positive and negative values over the given interval. To 

calculate the area of the region it is necessary to divide the interval into two parts. 
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The 𝑥-intercept of the function is 𝑥 = 𝜋. We compose two integrals to calculate the 

area 

                                         𝑆 = 𝑆1 + 𝑆2 

= ∫  sin𝑥

𝜋

𝜋
6

𝑑𝑥 + ||∫  sin𝑥 𝑑𝑥

5𝜋
4

𝜋

|| = − cos𝑥||

𝜋

𝜋

6

+ |− cos𝑥||

5𝜋

4

𝜋

= 

= − ( cos𝜋 −  cos
𝜋

6
) + |cos

5𝜋

4
−  cos𝜋| = 

= 1 +
√3

2
−

√2

2
+ 1 =

4 + √3 − √2

2
≈ 2.16   sq. units 

 

2. Calculate the area of a region enclosed by straight lines 𝑦 = 𝑥 and 𝑥 + 2𝑦 − 6 = 0, and 𝑥-

axis. 

Solution 

We construct the straight lines and choose the projection of the region to the 

𝑦-axis. 

 

Figure 7.2 

Let us calculate the coordinates of the intersection point A 

{
𝑦 = 𝑥                
𝑦 = (6 − 𝑥)/2 

𝑥 = (6 − 𝑥)/2 

2𝑥 = 6 − 𝑥 

3𝑥 = 6;      𝑥 = 2 

The intersection point A has the coordinates A (2,2). The boundaries of the integral 

are [0,2] with respect to variable 𝑦. The integral is 
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𝑆 = ∫(6 − 2𝑦 − 𝑦)

2

0

𝑑𝑦 = (6𝑦 −
3𝑦2

2
)|

2

0
= 12 − 3 ∙ 2 = 6   sq. units 

 

 

3. Calculate the area between two curves 𝑦 = (𝑥 + 2)2 and 𝑦 = 4 − 𝑥2. 

Solution 

 

Figure 7.3 

 

The region is defined in the interval [−2, 0]. We find its area 

                                                𝑆 = ∫(4 − 𝑥2 − (𝑥 + 2)2) 𝑑𝑥 = (4𝑥 −
𝑥3

3
−

(𝑥 + 2)3

3
)

0

−2

|
0

−2
= 

= 0 −
8

3
+ 8 −

8

3
− 0 =

8

3
   sq. units 

 

4. Calculate the area enclosed by  𝑦 = 0.5𝑥,   𝑦 = 0.5𝑥√1 + 𝑥2, 𝑥 = −2  and 𝑦-axis.  

Solution 

Construct the curves and the vertical line (see figure 7.4) 
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Figure 7.4 

Set up the integral 

𝑆 = ∫ (0.5𝑥 − 0.5𝑥√1 + 𝑥2) 𝑑𝑥

0

−2

= ∫ 0.5𝑥

0

−2

𝑑𝑥 − ∫ 0.5𝑥√1 + 𝑥2

0

−2

𝑑𝑥 

Let us solve the second integral separately 

                                   ∫ 0.5𝑥√1 + 𝑥2

0

−2

𝑑𝑥 =  

  = |
let  𝑢 = 1 + 𝑥2, then   𝑑𝑢 = 2𝑥𝑑𝑥  

𝑢1 = 5,   𝑢2 = 1
| = 

   =
1

4
∫ √𝑢

1

5

𝑑𝑢 =
1

4

𝑢
3
2

3
2

|
1

5
=

1

6
(1 − 5√5) 

Now 

𝑆 =
0.5𝑥

 ln0.5
|

0

−2
−

1 − 5√5

6
= 

   =
1

 ln0.5
(1 − 0.5−2) +

5√5 − 1

6
≈ 6.03   sq. units 

 

5. Calculate the area under one arc of the cycloid 

{
𝑥 = 2(𝑡 −  sin𝑡)
𝑦 = 2(1 −  cos𝑡)

 

Solution  



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

114  

Comment. The cycloid is the locus of a point on the rim of a circle of radius 𝑅 rolling 
along a straight line. We can see the way of construction of the cycloid on the webpage: 

Weisstein, Eric W. "Cycloid." From MathWorld--A Wolfram Web Resource. 
https://mathworld.wolfram.com/Cycloid.html  

The radius of the given cycloid is 𝑅 = 2. Then the area under the first arc is over the interval 

[0, 2𝜋𝑅] = [0, 4𝜋] (see figure 7.5). 

 

Figure 7.5 

We have to calculate the integral of the function given in parametric form. We calculate the 
boundaries with respect to the argument t in the following way: 

We have 0 ≤ 𝑥 ≤ 4𝜋. 

For the lower bound 𝑥 = 0 then 0 = 2(𝑡 −  sin𝑡). We calculate 𝑡1 = 0 

For the upper bound 𝑥 = 4𝜋 then 4𝜋 = 2(𝑡 −  sin𝑡);   2𝜋 = 𝑡 −  sin𝑡. We calculate 𝑡2 = 2𝜋. 

According to the formula given in chapter 4, we differentiate the function 𝑥 with respect to 
variable 𝑡 

𝑥′ = 2(1 −  cos𝑡) 

The area is 

                            𝑆 = ∫ 2(1 −  cos𝑡)2(1 −  cos𝑡)

2𝜋

0

𝑑𝑡 = 4 ∫ (1 − 2 cos𝑡 +  cos2𝑡)

2𝜋

0

𝑑𝑡 = 

= 4 ∫ (1 − 2 cos𝑡)𝑑𝑡

2𝜋

0

+ 2 ∫ (1 +  cos2𝑡)

2𝜋

0

𝑑𝑡 = 

= (4𝑡 − 8 sin𝑡 + 2𝑡 +  sin2𝑡) |
2𝜋

0
= 

= 8𝜋 + 4𝜋 = 12𝜋   sq. units 

 

https://mathworld.wolfram.com/Circle.html
https://mathworld.wolfram.com/Radius.html
https://mathworld.wolfram.com/Line.html
https://mathworld.wolfram.com/about/author.html
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/Cycloid.html
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6. Calculate the area of one petal of the polar rose 𝑟 = 4 cos3𝜑. 

Solution 

The given polar rose has three petals: 

 

Figure 7.6 

We calculate the area of the petal whose line of symmetry is the polar axis. Therefore, we can 
calculate half of the petal’s area and double the integral. First, we need to detect the upper 
bound of the integral. It appears when the distance of a point on the ray is zero 

0 = 4 cos3𝜑;  3𝜑 =
𝜋

2
;  𝜑2 =

𝜋

6
 

We set up the integral to calculate the area of one petal 

                                        𝑆 = 2 ∙
1

2
∫(4 cos3𝜑)2

𝜋
6

0

𝑑𝜑 = 

=
16

2
∫(1 +  cos6𝜑)

𝜋
6

0

𝑑𝜑 = 8 (𝜑 +
1

6
 sin6𝜑)||

𝜋

6

0

=
4𝜋

3
   sq. units 
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7.8 Application of the Definite Integral: Arc Length 

 

DETAILED DESCRIPTION: 

Definite integrals can be applied to calculate the length of various curves. This chapter explains 

the creation of the formula for calculation of arc length. The formula can be transformed for 

curves that are given as parametric equations or in polar form. The content is supplemented 

with examples of graphs constructed with GeoGebra and Desmos. 

AIM: to demonstrate the calculation of the arc length for curves given in the Cartesian 

coordinate system and for curves given in the polar coordinate system.  

 

Learning Outcomes: 

1. Students understand the application of definite integral to solve geometry tasks. 

2. Students can calculate the arc length of given curves. 

 

 

Prior Knowledge: basic rules of integration and differentiation; the Newton-Leibniz formula; 

properties of a functions; the construction of the graph of a function; algebra and trigonometry 

formulas.   

Relationship to real maritime problems: With the help of definite integrals it is possible to 

calculate the lengths of different objects that can be described by functions. For instance, it is 

possible to calculate the length of a rope hanging between two supports by integration. 

 

Content 

1. The formula for calculation of the length of an arc 

2. The length of an arc given by parametric equations 

3. The arc length of a polar curve 

4. Exercises 

5. Solutions 
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Arc Length 

7.8.1  The formula for calculation of the length of an arc 

Let the function 𝑦 = 𝑓(𝑥) be given over the interval [𝑎, 𝑏]. We will calculate the length of the 

arc 𝐴�̌� of this curve (see figure 1.1). 

 

Figure 1.1 

We will form a polygonal line by choosing points 𝐴 = 𝑃0, 𝑃1, 𝑃2, 𝑃3, …,  and 𝑃𝑛 = 𝐵 (see figure 

1.2). 

 

Figure 1.2 

Now we can calculate the length of every segment [𝑃𝑖−1, 𝑃𝑖] for every index 𝑖 (see figure 1.3) 

applying the theorem of Pythagoras: 

∆𝑙𝑖 = √(∆𝑥𝑖)2 + (∆𝑦𝑖)2,  

where  
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∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1;  ∆𝑦𝑖 = 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)  

 

 

Figure 1.3 

We change the expression 

∆𝑙𝑖 = √(∆𝑥𝑖)2 + (∆𝑦𝑖)2 = √1 + (
∆𝑦𝑖

∆𝑥𝑖
)

2

∙ ∆𝑥𝑖 

The approximate value of the arc length is the sum of the lengths of all segments ∆𝑙𝑖 

𝐴�̌� ≈ ∑ ∆𝑙𝑖

𝑛

𝑖=1

= ∑ √1 + (
∆𝑦𝑖

∆𝑥𝑖
)

2

∙ ∆𝑥𝑖

𝑛

𝑖=1

 

The result will be better if we divide the arc into smaller and smaller parts. Taking the limit 

when the maximum length of the interval ∆𝑥𝑖 tends to zero, we get the real length of the arc 

in the given units 

𝐴�̌� = lim
max ∆𝑥𝑖→0

∑ √1 + (
∆𝑦𝑖

∆𝑥𝑖
)

2

∙ ∆𝑥𝑖

𝑛

𝑖=1

 

Here we can recall the definition of derivative of the function 𝑦 = 𝑓(𝑥) with respect to the 

argument 𝑥 

𝐥𝐢𝐦
∆𝒙→𝟎

∆𝒚

∆𝒙
= 𝒚′ 

Thus, we express the limit as an integral in the following way getting the formula for calculation 

of the arc length 

𝑨�̌� = ∫ √𝟏 + (𝒚′)𝟐

𝒃

𝒂

𝒅𝒙 
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Example 1.1  

Calculate the length of the line segment given by equation 𝑦 = 3𝑥 − 2  from 𝑎 = −2  and 

    𝑏 = 3. 

Solution 

It is necessary to differentiate the given function to apply the formula 

𝑦′ = (3𝑥 − 2)′ = 3 

Now 

𝐿 = ∫ √1 + (3)2

3

−2

𝑑𝑥 = √10 ∫ 𝑑𝑥

3

−2

= √10𝑥|
3

−2
= 

                                                  = √10(3 + 2) = 5√10 ≈ 15.8  units  

 

7.8.2 The length of an arc given by parametric equations 

If the arc 𝐴�̌� = 𝐿 is described by parametric equations on the interval [𝑎, 𝑏] with respect to the 

argument 𝑡 

{
𝑥 = 𝑥(𝑡)
𝑦 = 𝑦(𝑡)

 

we can apply substitution with respect to the argument 𝑡 

𝐿 = ∫ √1 + (𝑦′)2

𝑏

𝑎

𝑑𝑥 = |
𝑥 = 𝑥(𝑡),   𝑑𝑥 = 𝑑(𝑥(𝑡)) = (𝑥′ (𝑡))𝑡𝑑𝑡 = �̇�𝑑𝑡

𝑦′ =
�̇�

�̇�
,   𝑥(𝑡1) = 𝑎,   𝑥(𝑡2) = 𝑏

| = 

                           = ∫ √1 + (
�̇�

�̇�
)

2

∙ �̇�

𝑡2

𝑡1

𝑑𝑡 = ∫ √�̇�2 + �̇�2

𝑡2

𝑡1

𝑑𝑡 

We can calculate the arc length for a parametrically given function by the formula 

𝑳 = ∫ √�̇�𝟐 + �̇�𝟐

𝒕𝟐

𝒕𝟏

𝒅𝒕 

Example 2.1 

Calculate the arc length of an astroid 

{
𝑥 = 4cos3𝑡
𝑦 = 4𝑠in3𝑡
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Solution 

Comment. An astroid is the locus of a point on a circle as it rolls inside a fixed circle with 

four times the radius (see figure 2.1). Parameter 𝑡 expresses the angle. The curve can 

be constructed if the parameter 𝑡 changes from 0 to 2𝜋. 

 

Figure 2.1 

The curve is centrally symmetric with respect to the origin. Therefore, we can calculate one-

fourth of the astroid where parameter 𝑡 changes from 0 to 𝜋/2. 

To create an integral, it is necessary to differentiate the parametric functions 

{
�̇� = 4 ∙ 3cos2𝑡(−sin𝑡)

�̇� = 4 ∙ 3sin2𝑡 ∙ cos𝑡    
 

The length of the given astroid is 

𝐿 = 4 ∫ √(4 ∙ 3cos2𝑡(−sin𝑡))2 + (4 ∙ 3sin2𝑡 ∙ cos𝑡)2𝑑𝑡

𝜋
2

0

= 

                                          = 4 ∫ √144cos4𝑡sin2𝑡 + 144sin4𝑡cos2𝑡

𝜋
2

0

𝑑𝑡 = 

                                         = 4 ∫ √144cos2𝑡sin2𝑡( cos2𝑡 + sin2𝑡)
𝜋

2
0

𝑑𝑡 = 

                                           = 4 ∫ 12sin𝑡 ∙  cos𝑡 𝑑𝑡

𝜋
2

0

= 48 ∫ sin𝑡 𝑑(sin𝑡)

𝜋
2

0

 = 48
sin2𝑡

2
||

𝜋

2

0

= 

                                           = 24(1 − 0) = 24  units 
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7.8.3 The arc length of a polar curve  

The arc length 𝑀�̆� of a polar curve 𝑟 = 𝑟(𝜑) between the rays 𝛼 and 𝛽 (see figure 3.1) is given 

by the integral 

𝑳 = ∫ √𝒓𝟐 + (𝒓′)𝟐

𝜷

𝜶

𝒅𝝋 

 

Figure 3.1 

 

Example 3.1  

Calculate the length of the arc of the circle 𝑟 = 6 between 0 ≤ 𝜑 ≤
2𝜋

3
 

Solution 

We will calculate the length of the arc that is one-third of the circle with radius 6 (see 

figure 3.2) 

 

Figure 3.2 

Provided that the value of derivative 𝑟’ = 0, the length of the arc is 

                                     𝐿 = ∫ √36 + 0

2𝜋
3

0

𝑑𝜑 = ∫ 6

2𝜋
3

0

𝑑𝜑 = 6𝜑||

2𝜋

3

0

= 4𝜋   units 
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7.8.4 Exercises 

1. Calculate the arc length of the curve 𝑦 =
4

3
√𝑥3 from 𝑥 = 1 to 𝑥 = 2. 

2. Calculate the arc length of the curve 𝑦 = ln𝑥 from 𝑥 = 1 to 𝑥 = √2. 

3. Find the length of one arc of the cycloid given by parametric equations 

{
𝑥 = 2(1 − sin𝑡)

𝑦 = 2(𝑡 −  cos𝑡)
 

4. Calculate the arc length of the circle 𝑟 = 4 cos𝜑 included between the polar rays 𝜑 =

−
𝜋

3
 and 𝜑 =

𝜋

5
. 

 

7.8.5 Solutions 

1. Calculate the arc length of the curve 𝑦 =
4

3
√𝑥3 from 𝑥 = 1 to 𝑥 = 2. 

Solution 

Construct the graph 

 

Figure 5.1 

We calculate the arc length between the points A and B. The derivative of the function 

𝑦′ = (
4

3
𝑥

3
2)

′

= 2√𝑥 

We use the arc length formula 
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𝑨�̌� = ∫ √𝟏 + (𝒚′)𝟐

𝒃

𝒂

𝒅𝒙 

𝐿 = ∫ √1 + (2√𝑥)
2

2

1

𝑑𝑥 = ∫ √1 + 4𝑥

2

1

𝑑𝑥 = |
𝑢 = 1 + 4𝑥,   𝑑𝑢 = 4𝑑𝑥

𝑥1 = 1,   𝑢1 = 5;  𝑥2 = 2,   𝑢2 = 9   
| = 

=
1

4
∫ 𝑢

1
2

9

5

𝑑𝑥 =
1

4

𝑢
3
2

3
2

|
9

5
=

1

6
(33 − √53) =

1

6
(27 − 5√5) ≈ 2.64   units 

2. Calculate the arc length of the curve 𝑦 = ln𝑥 from 𝑥 = 1 to 𝑥 = √2. 

Solution 

Construct the graph of the given function 

 

Figure 5.2 

The derivative of the function 𝑦 = ln𝑥 is 

𝑦′ = (ln𝑥)′ =
1

𝑥
 

To calculate the integral, we use an algebraic transformation of the integrand and apply 

substitution 

                                      𝐿 = ∫ √1 +
1

𝑥2

√2

1

𝑑𝑥 = ∫ √
𝑥2 + 1

𝑥2

√2

1

𝑑𝑥 = 

= ∫
√𝑥2 + 1

𝑥

√2

1

𝑑𝑥 = ∫
√𝑥2 + 1

𝑥2

√2

1

𝑥𝑑𝑥 = |
𝑢2 = 𝑥2 + 1,   2𝑢𝑑𝑢 = 2𝑥𝑑𝑥

𝑢1 = √2,   𝑢2 = √3
|

= 
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= ∫
𝑢

𝑢2 − 1

√3

√2

𝑢𝑑𝑢 = ∫
𝑢2 − 1 + 1

𝑢2 − 1

√3

√2

𝑑𝑢 = 

= ∫ 𝑑𝑢

√3

√2

+ ∫
1

𝑢2 − 1

√3

√2

𝑑𝑢 = (𝑢 +
1

2
ln |

𝑢 − 1

𝑢 + 1
|)|

√3

√2

= 

= √3 − √2 +
1

2
(ln |

√3 − 1

√3 + 1
| − ln |

√2 − 1

√2 + 1
|) ≈ 0.54    units 

 

3. Find the length of one arc of the cycloid given by parametric equations 

{
𝑥 = 2(𝑡 − sin𝑡)

𝑦 = 2(1 −  cos𝑡)
 

Solution 

We can calculate the length of one arc of the cycloid (see figure 5.3) if the range of the 

parameter    𝑡 ∈  [0,2𝜋]. 

 

Figure 5.3 

First we will calculate the derivatives 

�̇� = 2(1 −  cos𝑡)
�̇� = 2sin𝑡            

 

Now we will simplify the expression by applying algebra and trigonometry formulas 

�̇�2 + �̇�2 = 4(1 −  cos𝑡)2 + 4sin2𝑡 = 

                = 4(1 − 2 cos𝑡 +  cos2𝑡 + sin2𝑡) = 

                = 4(2 − 2 cos𝑡) = 8 ∙ 2sin2
𝑡

2
= 16sin2

𝑡

2
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We used trigonometry formulas 

𝐜𝐨𝐬𝟐𝒕 + 𝐬𝐢𝐧𝟐𝒕 = 𝟏 

𝟏 − 𝐜𝐨𝐬𝒕 = 𝟐𝐬𝐢𝐧𝟐
𝒕

𝟐
 

The length of the first arc of cycloid is 

                                         𝐿 = ∫ √�̇�2 + �̇�2

2𝜋

0

𝑑𝑡 = ∫ √16sin2
𝑡

2

2𝜋

0

𝑑𝑡 = 

= ∫ 4sin
𝑡

2

2𝜋

0

𝑑𝑡 = −8 cos
𝑡

2
|

2𝜋

0
= −8( cos𝜋 −  cos0) = 

= −8 ∙ (−2) = 16   units 

 

4. Calculate the arc length of the circle 𝑟 = 4 cos𝜑 included between the polar rays 𝜑 =

−
𝜋

3
 and 𝜑 =

𝜋

5
. 

Solution 

Construct the curve in the polar coordinate system (see figure 5.4) 

 

Figure 5.4 

Calculate the derivative and transform the trigonometric expression 

𝑟′ = (4 cos𝜑)′ = −4sin𝜑 

𝑟2 + 𝑟′2 = 16 cos2𝜑 + 16sin2𝜑 = 16 

Create an integral 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

126  

                                         𝐿 = ∫ √𝑟2 + 𝑟′2

𝜋
5

−
𝜋
3

𝑑𝜑 = ∫ √16

𝜋
5

−
𝜋
3

𝑑𝜑 = 4𝜑||

𝜋

5

−
𝜋

3

= 

= 4 (
𝜋

5
+

𝜋

3
) =

32𝜋

15
   units 
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7.9 Application of the Definite Integral: Volume of a Solid of Revolution 

 

DETAILED DESCRIPTION: 

This chapter introduces the main principles for calculation of the volume of solids of revolution. 

Different examples are discussed where solids are generated by elementary curves and lines. 

Some composite constructions are explained. The case of the parametrically given curve is 

included to describe the solid of revolution. The content is supplemented with examples of 

graphs and surfaces constructed with GeoGebra tools. 

AIM: to show the methods of calculation of the volume of solids of revolution.   

 

Learning Outcomes: 

1. Students understand the application of the definite integral in solving geometry 

tasks. 

2. Students can construct regions of a revolution and understand what surfaces they 

form. 

3. Students can calculate the volume of solids of revolution. 

 

 

Prior Knowledge: basic rules of integration and differentiation; the Newton-Leibniz formula; 

properties of functions; the construction of graphs of functions; algebra and trigonometry 

formulas.   

Relationship to real maritime problems: Volume is a very important concept if we are speaking 

about the capacity of cargo holds, the capacity of fuel oil tanks or ballast water tanks, tanks of 

lubricating oil, or others. It is important to know the amount of material required for producing 

a specific part with a definite volume. Calculations of the volume of containers, cauldrons, and 

tanks are among the necessary premises for designing a ship’s engineering equipment. 

 

Content 

1. Volume of a solid of revolution obtained by rotating an area about 𝑥-axis 

2. Volume of a solid of revolution generated by two curves 

3. Rotation about the 𝑦-axis 

4. Revolution of parametrically given curves 

5. Exercises 

6. Solutions 
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Application of the Definite Integral. Volume of a Solid of Revolution 

 

7.9.1 Volume of a solid of revolution obtained by rotating an area about x-
axis 

Let us recall the concept of the solid of revolution. 

Definition. The solid of revolution is a solid figure obtained by rotating a plane curve around a 

straight line (the axis of revolution) that lies in the same plane. 

Let the function 𝑦 = 𝑓(𝑥) be a continuous non-negative function on the interval [𝑎, 𝑏].  

Consider the solid formed by rotating (revolving) the region bounded by the curve 𝑓(𝑥), 

straight lines 𝑥 = 𝑎, 𝑥 = 𝑏, and 𝑥- axis about the 𝒙-axes (see figure 1.1). This solid is called a 

solid of revolution.  

  

  

Figure 1.1 

The volume of this solid can be calculated by the formula: 

𝑽 = 𝝅 ∫ (𝒇(𝒙))𝟐𝒅𝒙
𝒃

𝒂

 

Example 1.1  

Let us find the volume of solid of revolution obtained by revolving the area bounded by the 

curve    𝑦 = 𝑥3  and 𝑥-axis between 𝑥 = 0 and 𝑥 = 2 about 𝑥-axis. 

Solution 

The region is given in figure 1.2. Figure 1.3 presents the solid of revolution. 

The Volume is 

𝑉 = 𝜋 ∫ (𝑥3)2𝑑𝑥
2

0

= 𝜋 ∫ 𝑥6𝑑𝑥
2

0

= 𝜋
𝑥7

7
|

0

2

= 

𝑎 

 

𝑥 

 

𝑦 

 y=f(x) 

 

𝑏 

 

https://en.wikipedia.org/wiki/Plane_curve
https://en.wikipedia.org/wiki/Straight_line
https://en.wikipedia.org/wiki/Axis_of_rotation
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=
27 ∙ 𝜋

7
=

128𝜋

7
≈ 57.45  cubic units 

 

                              

Figure 1.2                                                                              Figure 1.3  

 

7.9.2 Volume of a solid of revolution generated by two curves 

Let us consider two functions 𝑓1
(𝑥) and 𝑓2

(𝑥)  that are continuous and non-negative on the 

interval [𝑎, 𝑏] and 𝑓1
(𝑥) ≤ 𝑓2

(𝑥) (see figure 2.1). 

The volume of the solid formed by rotating the area bounded by two curves 𝑦 = 𝑓2(𝑥)  and 

𝑦 = 𝑓1(𝑥) between 𝑥 = 𝑎 and 𝑥 = 𝑏 about the 𝒙-axis (see figure 2.2) is defined as: 

𝑽 = 𝝅 ∫ [(𝒇𝟐(𝒙))𝟐 − (𝒇𝟏(𝒙))𝟐]𝒅𝒙
𝒃

𝒂

 

Note that due to  𝑓1
(𝑥) ≤ 𝑓2

(𝑥) the curve 𝑦 = 𝑓2(𝑥) bounds the area on the top and curve 

𝑦 = 𝑓1(𝑥)  bounds the area on the bottom. 

         

Figure 2.1                                                                                Figure 2.2 

𝑎 

 

𝑥 

 

𝑦 

 
y=f 

 

2 

 

(x) 

 

𝑏 

 

y=f 

 

1 

 

(x) 

 
𝑎 

 

𝑥 

 

𝑦 

 y=f 

 

2 

 

(x) 

 

𝑏 

 

y=f 

 

1 

 

(x) 
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Example 2.1 

Find the volume of a solid of revolution obtained by rotating the area bounded by the curve 

𝑦 = 𝑥3  and the straight line 𝑦 = 4𝑥  about the 𝑥-axis. 

Solution 

We sketch the region of the revolution (see figure 2.3) and the solid of revolution (see 

figure 2.4). 

The intersection points of the two lines are (0,0) and (2,8), therefore the area is 

between 𝑥 = 0,    𝑥 = 2. In this region 𝑥3 < 4𝑥. It means that the region is bounded by 

the line  𝑦 = 4𝑥 on the top and by the curve 𝑦 = 𝑥3 on the bottom.  

We use the formula to calculate the volume of a solid:  

𝑽 = 𝝅 ∫ [(𝒇𝟐(𝒙))𝟐 − (𝒇𝟏(𝒙))𝟐]𝒅𝒙
𝒃

𝒂

 

                         

                            Figure 2.3                                                                         Figure 2.4 

 

For the given case  

                                     𝑉 = 𝜋 ∫ [(4𝑥)2 − (𝑥3)2]𝑑𝑥 = 𝜋 ∫ [16𝑥2 − 𝑥6]𝑑𝑥
2

0

2

0

= 

= 𝜋 (
16𝑥3

3
−

𝑥7

7
)|

0

2

= 

= 𝜋 (
128

3
−

128

7
) =

512𝜋

21
≈ 76.59 cub. units 

 

https://context.reverso.net/translation/english-russian/intersection+point
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7.9.3 Rotation about the y-axis 

The volume of the solid, when the region bounded by the curve 𝑥 = 𝑥(𝑦)  and 𝑦-axis between 

𝑦 = 𝑐  and  𝑦 = 𝑑 , revolves about the 𝒚-axis (see figure 3.1) can be found by using the formula: 

𝑽 = 𝝅 ∫ (𝒙(𝒚))
𝟐

𝒅𝒚
𝒅

𝒄

 

Here the function 𝑥 = 𝑥(𝑦)  is continuous on the interval [𝑐, 𝑑]. 

 

Figure 3.1 

 

In the case when the area located between 𝑦 = 𝑐  and  𝑦 = 𝑑 and bounded by the curve 𝑥 =

𝑥2(𝑦) on the right side and by the curve 𝑥 = 𝑥1(𝑦) on the left side of the area, revolves about 

the 𝒚-axis, the volume of the obtained solid of revolution is calculated by the formula 

𝑽 = 𝝅 ∫ [(𝒙𝟐(𝒚))
𝟐

− (𝒙𝟏(𝒚))
𝟐

] 𝒅𝒚
𝒅

𝒄

 

The functions 𝑥 = 𝑥1(𝑦)  and  𝑥 = 𝑥2(𝑦) are continuous on the interval [𝑐, 𝑑] and  𝑥1(𝑦) ≤

𝑥2(𝑦) on the interval 𝑦 ∈ [𝑐, 𝑑]. 

 

Example 3.1 

We find the volume of the solid obtained by revolving about the 𝑦-axis the area bounded by 

the curve 𝑦 = 𝑥3, the line 𝑦 = 8, and the 𝑦-axis.  

Solution 

The region is sketched in figure 3.2. The solid is sketched in figure 3.3. 

𝑐 

 𝑥 

 

𝑦 

 

x=f(y) 

 

𝑑 
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Figure 3.2                                                                                      Figure 3.3 

 

We use the formula  

𝑽 = 𝝅 ∫ (𝒙(𝒚))
𝟐

𝒅𝒚
𝒅

𝒄

 

From the equation 𝑦 = 𝑥3 we express 𝑥 = √𝑦3 . 

Then  

                                       𝑉 = 𝜋 ∫ ( √𝑦3 )
2

𝑑𝑦
8

0

= 𝜋 ∫ 𝑦
2
3𝑑𝑦

8

0

= 

= 𝜋
3𝑦

5
3

5
|

0

8

= 𝜋
3( √8

3
)

5

5
=

96𝜋

5
≈ 60.32 cub. units 

 

Example 3.2 

Let us consider the givens from Example 1.1 (see figure 1.2). Let the region bounded by the 

functions 𝑦 = 𝑥3 and 𝑥 = 2  revolve around the 𝑦-axis (see figure 3.4). We will find the volume 

of such solid. 

Solution 

The region of the revolution is bounded by the line 𝑥 = 2 on the right side and by the 

curve 𝑦 = 𝑥3 on the right side, therefore we use the formula 

𝑽 = 𝝅 ∫ [(𝒙𝟐(𝒚))
𝟐

− (𝒙𝟏(𝒚))
𝟐

] 𝒅𝒚
𝒅

𝒄

 

To find the interval of integration, we find the value of the function 𝑦 = 𝑥3 at 𝑥 = 2:   



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

133  

𝑦(2) = 8 

 

 

Figure 3.4 

From the equation of the curve 𝑦 = 𝑥3  we find  𝑥 = √𝑦3   .  

Then  

                                       𝑉 = 𝜋 ∫ [(2)2 − ( √𝑦3 )
2

] 𝑑𝑦
8

0

= 𝜋 ∫ [4 − 𝑦
2
3] 𝑑𝑦

8

0

= 

= 𝜋 (4𝑦 −
3𝑦

5
3

5
)|

0

8

= 𝜋 (32 −
3( √8

3
)

5

5
) = 

= 𝜋 (32 −
96

5
) =

64𝜋

5
≈ 40.2  cub. units 

 

Example 3.3 

Let us consider the region from example 2.1 (see figure 2.3) now rotating about the 𝑦-axis. The 

area is bounded by the curve 𝑦 = 𝑥3 and the straight line 𝑦 = 4𝑥. To find the volume of the 

solid of revolution obtained by rotating this region about the 𝑦-axis (see figure 3.5), we will use 

the same formula as in the previous example. The region is bounded by 𝑥 = 𝑦/4  and  𝑥 = √𝑦3 . 

The variable 𝑦 belongs to the interval  [0,8]. The volume is  

                                       𝑉 = 𝜋 ∫ [( √𝑦3 )
2

− (
𝑦

4
)

2

] 𝑑𝑦
8

0

= 
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= 𝜋 ∫ [𝑦
2
3 −

𝑦2

16
] 𝑑𝑦

8

0

= 𝜋 (
3𝑦

5
3

5
−

𝑦3

16 ∙ 3
)|

0

8

= 

= 𝜋 (
3( √8

3
)

5

5
−

83

48
) = 𝜋 (

96

5
−

32

3
) =

128𝜋

15
≈ 26,8  cub. units 

 

Figure 3.5 

 

7.9.4 Revolution of parametrically given curves 

Let the plane area be bounded by the line defined in parametric form  𝒙 = 𝒙(𝒕), 𝒚 = 𝒚(𝒕) and 

by the lines 𝒙 = 𝒂, 𝒙 = 𝒃, 𝒚 = 𝟎.  

1) If the corresponding values of the parameter t to the variable 𝑥 ∈ [𝑎, 𝑏] belong to the 

interval [𝑡1, 𝑡2], then the volume of the solid of revolution around the 𝒙-axis is calculated by 

the formula: 

𝑽 = 𝝅 ∫ (𝒚(𝒕))
𝟐

𝒙′(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏

 

2) In the case when the plane area, bounded by the line given in parametric form 𝒙 = 𝒙(𝒕), 

𝒚 = 𝒚(𝒕) and by the lines 𝒚 = 𝒄,  𝒚 = 𝒅, 𝒙 = 𝟎, revolves about the 𝒚-axis, the volume of the 

solid of revolution is calculated by using the following formula: 

𝑽 = 𝝅 ∫ (𝒙(𝒕))
𝟐

𝒚′(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏

 

 

Example 4.1 

The plane area is bounded by quarter of an ellipse presented in parametric form 

{
𝑥 = 2cos𝑡
𝑦 = sin𝑡  
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and by lines 𝑥 = 0, 𝑦 = 0 (see figure 4.1). Find the volume of the solid of revolution obtained 

by rotating this region a) about the 𝑥-axis; b) about the 𝑦-axis.  

 

Figure 4.1 

Solution 

Case a) 

The region revolves about the 𝑥-axis (see figure 4.2):  

 

Figure 4.2 

We will find the values of parameter 𝑡 corresponding to the endpoints of a projection 

of quarter of ellipse on the 𝑥-axis, that is,  𝑥 = 0 and  𝑥 = 2: 

If 𝑥 = 0 then cos𝑡 = 0  and  𝑡 = 𝜋/2. 

If 𝑥 = 2 then 2cos𝑡 = 2  and  𝑡 = 0. 

We find the volume of the solid of revolution obtained when the area revolves about 

the       𝑥-axis by using the formula: 

𝑽 = 𝝅 ∫ (𝒚(𝒕))
𝟐

𝒙′(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏

 

We differentiate the function 𝑥 = 2cos 𝑡 with respect to the argument 𝑡 

𝑥′ = (2cos𝑡)′ = −2sin𝑡 

 

The volume of the solid is 
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                         𝑉 = 𝜋 ∫ (sin𝑡)2(−2sin𝑡)𝑑𝑡
0

𝜋
2

= −2𝜋 ∫ sin3𝑡𝑑𝑡 = 2𝜋 ∫ sin2𝑡 ∙ sin𝑡𝑑𝑡

𝜋
2

0

0

𝜋
2

= 

= −2𝜋 ∫ (1 − cos 2𝑡)𝑑(cos 𝑡) = −2𝜋 (cos𝑡 −
cos3𝑡

3
)|

0

𝜋
2

𝜋
2

0

= 

= −2𝜋 (cos
𝜋

2
−

cos3 𝜋
2

3
) + 2𝜋 (cos0 −

cos30

3
) = 2𝜋 (1 −

1

3
) = 

=
4𝜋

3
  cub. units 

Case b) 

The region revolves about the 𝑦-axis (see figure 4.3)  

 

Figure 4.3 

We find the values of parameter 𝑡 that correspond to 𝑦 = 0 and 𝑦 = 1. 

If 𝑦 = 0 then sin𝑡 = 0  and  𝑡 = 0. 

If 𝑦 = 3 then sin𝑡 = 1  and  𝑡 = 𝜋/2. 

We find the volume of the solid of revolution obtained when the area revolves about 

the  𝑦-axis by using the formula: 

𝑽 = 𝝅 ∫ (𝒙(𝒕))
𝟐

𝒚′(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏

 

We differentiate  𝑦′ = (sin𝑡)′ = cos𝑡. 

                                       𝑉 = 𝜋 ∫ (2cos𝑡)2(cos𝑡)𝑑𝑡

𝜋
2

0

= 4𝜋 ∫ cos2𝑡 ∙ cos𝑡

𝜋
2

0

𝑑𝑡 = 
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= 4𝜋 ∫ (1 − sin2𝑡)𝑑(sin𝑡) = 4𝜋 (sin𝑡 −
sin3𝑡

3
)|

0

𝜋
2

𝜋
2

0

= 

= 4𝜋 (1 −
1

3
) − 0 =

8𝜋

3
   cub. units    

 

7.9.5 Exercises 

1. Calculate the volume of the solid obtained by rotating the region bounded by the parabola              

𝑦 = 𝑥2 + 1 and the straight lines 𝑦 = −1, 𝑥 = 1, 𝑦 = 0 about the 𝑥-axis. 

2. Find the volume of the solid obtained by rotating the region bounded by two sine functions           

𝑦 = 3sin𝑥 and 𝑦 = sin𝑥 between 𝑥 = 1 and  𝑥 = 𝜋  about the 𝑥-axis.  

3. Calculate the volume of the solid obtained by revolving about 𝑦-axis the area bounded by 

the hyperbola  𝑥𝑦 = 4 and the lines 𝑦 = 1, 𝑦 = 4, and  𝑥 = 0.  

4. Calculate the volume of the solid obtained by rotating the region bounded by the curve 𝑦 =

ln𝑥 and the lines 𝑦 = 0,  𝑥 = 𝑒 about the 𝑦-axis. 

5. Calculate the volume of the solid obtained by rotating the region bounded by the parabola 

𝑦 = x2, the line 𝑥 + 𝑦 = 2 , and  𝑦 = 0  a) about the 𝑥-axis; b) about the 𝑦-axis. 

6. Find the volume of the solid obtained by rotating about the 𝑦-axis the region bounded by the 

part of asteroid given in parametric form 𝑥 = cos3𝑡   and 𝑦 = 2sin3𝑡  on the interval  𝑡 ∈

[−
𝜋

2
;

𝜋

2
]. 

7. Find the volume of the solid obtained by rotating about the 𝑥-axis the region bounded by the 

part of line given in parametric form 𝑥 = 2tan𝑡  and 𝑦 = 2cos2𝑡,  𝑥 = −2, 𝑥 = 2, 𝑦 = 0. 

 

 

7.9.6 Solutions 

1. Calculate the volume of the solid obtained by rotating the region bounded by the 

parabola              𝑦 = 𝑥2 + 1, straight lines   𝑦 = −1, 𝑥 = 1, 𝑦 = 0  about the 𝑥-axis. 

Solution 

The region is bounded by a curve and straight lines (see figure 6.1) 
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Figure 6.1 

As the region is rotating about the 𝑥-axis we use the following formula to calculate the 

volume of the solid of revolution (see figure 6.2): 

𝑽 = 𝝅 ∫ (𝒇(𝒙))𝟐𝒅𝒙
𝒃

𝒂

 

Then 

   𝑉 = 𝜋 ∫ (𝑥2 + 1)2𝑑𝑥 = 𝜋 ∫ (𝑥4 + 2𝑥2 + 1)𝑑𝑥 =
1

−1

1

−1

 

= 𝜋 ∫ (𝑥4 + 2𝑥2 + 1)𝑑𝑥 =
1

−1

𝜋 (
𝑥5

5
+

2𝑥3

3
+ 𝑥)|

−1

1

= 

                             = 𝜋 (
1

5
+

2

3
+ 1) − 𝜋 (−

1

5
−

2

3
− 1) =

56𝜋

15
≈ 11.73   cub. units 

 

 

Figure 6.2 
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2. Find the volume of the solid obtained by rotating the region bounded by two sine 

functions   𝑦 = 3sin𝑥 and 𝑦 = sin𝑥  between 𝑥 = 1 and  𝑥 = 𝜋 about the 𝑥-axis.  

Solution 

Let us construct the given region (see figure 6.3): 

 

Figure 6.3                 

The region, revolving about 𝑥-axis, is bounded on the top by the curve 𝑦 = 3sin𝑥  and 

on the bottom by the curve 𝑦 = sin𝑥  between 𝑥 = 1 and  𝑥 = 𝜋. Therefore, to 

calculate the volume of the solid of revolution (see figure 6.4) we use: 

𝑽 = 𝝅 ∫ [(𝒇𝟐(𝒙))𝟐 − (𝒇𝟏(𝒙))𝟐]𝒅𝒙
𝒃

𝒂

 

 

            

Figure 6.4 

                                       𝑉 = 𝜋 ∫ [(3sin𝑥)2 − (sin𝑥)2]𝑑𝑥
𝜋

0

= 𝜋 ∫ [9sin2𝑥 − sin2𝑥]𝑑𝑥 =
𝜋

0

 

   = 𝜋 ∫ 8sin2𝑥𝑑𝑥 =
𝜋

0
8𝜋 ∫

1

2
(1 − cos2𝑥)𝑑𝑥

𝜋

0
= 
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  = 4𝜋 ∫ (1 − cos2𝑥)𝑑𝑥
𝜋

0
= 4𝜋 (𝑥 −

1

2
sin2𝑥)|

0

𝜋
= 

  = 4𝜋 [(𝜋 −
1

2
sin2𝜋) − (0 −

1

2
sin0)] = 4𝜋2 ≈ 39.48  cub. units 

 

 

3. Calculate the volume of the solid obtained by revolving about the 𝑦-axis the area 

bounded by the hyperbola 𝑥𝑦 = 4 and the lines 𝑦 = 1, 𝑦 = 4, and  𝑥 = 0.  

Solution 

The region is shown in figure 6.5  

 

 

Figure 6.5 

 

 

Figure 6.6 

 

The region revolving about the 𝑦-axis is bounded on the right by the curve 𝑦 =  4/𝑥  

and on the left by the 𝑦-axis between 𝑦 = 1 and 𝑦 = 4. Therefore, to calculate the 

volume of the solid of the revolution (see figure 6.6) we use: 
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𝑽 = 𝝅 ∫ (𝒙(𝒚))𝟐𝒅𝒚
𝒅

𝒄

 

The solution is  

                                                      𝑉 = 𝜋 ∫ (
4

𝑦
)

2

𝑑𝑥
4

1

= 𝜋 ∫
16

𝑦2
𝑑𝑥 =

4

1

 

= 16𝜋 ∫ 𝑦−2𝑑𝑥
4

1

= 16𝜋
𝑦−1

−1
|

1

4

= 

= −16𝜋
1

𝑦
|

1

4

= −16𝜋 (
1

4
− 1) = 12𝜋  cub. units 

   

 

4. Calculate the volume of the solid obtained by rotating the region bounded by the curve       

𝑦 = ln𝑥 and the lines 𝑦 = 0 and  𝑥 = 𝑒 about the 𝑦-axis. 

Solution 

We construct the region: 

 

Figure 6.7 

The region is bounded by the line 𝑥 = e on the right and by y = ln𝑥 on the top of the 

area. In this case, to calculate the volume of the solid obtained by rotating the region 

about the 𝑦-axis (see figure 6.8), we use the following formula: 

𝑽 = 𝝅 ∫ [(𝒙𝟐(𝒚))
𝟐

− (𝒙𝟏(𝒚))
𝟐

] 𝒅𝒚
𝒅

𝒄
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Figure 6.8 

To compose an integral, we express the function 𝑥 with respect to the argument 𝑦, that 

is,  𝑥 = 𝑒𝑦 

                                                      𝑉 = 𝜋 ∫ [e2 − (𝑒𝑦)2]𝑑𝑦 = 𝜋 ∫ [e2 − 𝑒2𝑦]𝑑𝑦
1

0

1

0

= 

= 𝜋 (e2y −
1

2
𝑒2𝑦)|

0

1

= 

= π (e2 −
1

2
𝑒2 − (0 −

1

2
)) = 

=
π

2
(𝑒2 + 1) ≈ 13.18   cub. units           

 

 

5. Calculate the volume of the solid obtained by rotating the region bounded by 𝑦 = 𝑥2,             

𝑥 + 𝑦 = 2, and  𝑦 = 0 a) about the 𝑥-axis; b) about the 𝑦-axis. 

Solution 

The region is shown in figure 6.9. 

 

Figure 6.9 
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Case a) 

The region revolves about the 𝑥-axis (see figure 6.10). 

 
Figure 6.10 

 

In this case, the volume of the obtained solid of revolution is equal to the sum of 

volumes of two solids 𝑉1  and 𝑉2   

𝑉 = 𝑉1 + 𝑉2  

where  𝑉1  is the volume of the solid generated by the parabola 𝑦 = 𝑥2 rotated around 

the 𝑥-axis on the interval 0 ≤ 𝑥 ≤ 1  and   𝑉2  is the volume of the solid generated by 

the line  𝑥 + 𝑦 = 2 rotated around the 𝑥-axis on the interval 1 ≤ 𝑥 ≤ 2.   

 

Therefore, 

                                  𝑉 = 𝑉1 + 𝑉2 = 𝜋 ∫ (𝑥2)2
1

0

𝑑𝑥 + 𝜋 ∫ (2 − 𝑥)2
2

1

𝑑𝑥 = 

= 𝜋 ∫ 𝑥4
1

0

𝑑𝑥 + 𝜋 ∫ (4 − 4𝑥 + 𝑥2)
2

1

𝑑𝑥 = 

= 𝜋
𝑥5

5
|

0

1

+ 𝜋 (4𝑥 − 2𝑥2 +
𝑥3

3
)|

1

2

= 

=
𝜋

5
+ 𝜋 (8 − 8 +

8

3
) − 𝜋 (4 − 2 +

1

3
) = 

=
8𝜋

15
≈ 1.68  cub. units 

 

Case b) 

The region revolves about the 𝑦-axis (see figure 6.11). 
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Figure 6.11 

 

The region is located between 𝑦 = 0 and 𝑦 = 1 and is bounded by the line 𝑥 + 𝑦 = 2 

on the right. On the left the parabola y = x2 bounds the region. We express the 

functions in terms of the argument 𝑦: 

from 𝑥 + 𝑦 = 2   follows     𝑥 = 2 − y, 

from 𝑦 = x2     follows    𝑥 = √y. 

Then 

                                                      𝑉 = 𝜋 ∫ [(𝑥2(𝑦))
2

− (𝑥1(𝑦))
2

] 𝑑𝑦 =
𝑑

𝑐

 

= 𝜋 ∫ [(2 − y)2 − (√y)
2
] 𝑑𝑦 = 𝜋 ∫ [4 − 4y + y2 − y]𝑑𝑦 =

1

0

1

0

 

= 𝜋 ∫ [4 − 5y + y2]𝑑𝑦 =
1

0

π (4y −
5y2

2
+

y3

3
)|

0

1

= 

= π (4 −
5

2
+

1

3
) =

11π

6
≈ 5.76  cub. units 

 

 

 

6. Find the volume of the solid obtained by rotating about the 𝑦-axis the region bounded 

by the part of asteroid given in parametric form 𝑥 = cos3𝑡   and 𝑦 = 2sin3𝑡,                     

𝑡 ∈ [−
𝜋

2
;

𝜋

2
] . 

Solution 
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The region is shown in figure 6.12. We apply the following formula to calculate the 

volume of the solid (see figure 6.13) 

𝑽 = 𝝅 ∫ (𝒙(𝒕))
𝟐

𝒚′(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏

 

 

 

Figure 6.12 

To create an integral for calculation of the volume of the solid (see figure 6.13) we need 

to find the derivative of the function 𝑦 with respect to the argument 𝑡 

𝑦′ = (2sin3𝑡)
′

= 6sin2𝑡cos𝑡 

 

Figure 6.13 

                                                      𝑉 = 𝜋 ∫ (cos3𝑡)2(6sin2𝑡cos𝑡)𝑑𝑡

𝜋
2

−
𝜋
2

= 
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= 6𝜋 ∫ cos6𝑡 sin2𝑡 ∙ cos𝑡𝑑𝑡 =

𝜋
2

−
𝜋
2

 

= 6𝜋 ∫ (1 − sin2𝑡)3sin2𝑡 ∙ 𝑑(sin𝑡)

𝜋
2

−
𝜋
2

= 

= 6𝜋 ∫ (1 − 3sin2𝑡 + 3sin4𝑡 − sin 6𝑡) ∙ sin2𝑡𝑑(sin𝑡)

𝜋
2

−
𝜋
2

= 

= 6𝜋 ∫ (sin2𝑡 − 3sin4𝑡 + 3sin6𝑡 − sin 8𝑡)𝑑(sin𝑡)

𝜋
2

−
𝜋
2

= 

= 6𝜋 (
sin3𝑡

3
−

3sin5𝑡

5
+

3sin7𝑡

7
−

sin9𝑡

9
)|

0

𝜋
2

= 

= 6𝜋 (
1

3
−

3

5
+

3

7
−

1

9
) − 0 =

32𝜋

105
≈ 0.96  cub. units 

 

 

7. Find the volume of the solid obtained by rotating about the 𝑥-axis the region bounded by the 

part of line given in parametric form 

{
𝑥 = 2tan𝑡

𝑦 = 2cos2𝑡
;  𝑥 = −2, 𝑥 = 2, 𝑦 = 0. 

Solution 

The area is shown in figure 6.14. The solid of revolution is presented in figure 6.15.  

 

Figure 6.14 

The given area is symmetric according to the 𝑦-axis, therefore we will find the volume 

for the interval 0 ≤ 𝑥 ≤ 2 and multiply the result by 2: 

𝑉 = 2 ∙ 𝑉1 

where  𝑉1 is volume for 0 ≤ x ≤ 2. We use the formula 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

147  

𝑽 = 𝝅 ∫ (𝒚(𝒕))
𝟐

𝒙′(𝒕)𝒅𝒕
𝒕𝟐

𝒕𝟏

 

 

 

Figure 6.15 

The values of a parameter t corresponding to 𝑥 = 0 and 𝑥 = 2 are the following: 

If 𝑥 = 0 then  2tan𝑡 = 0  and  𝑡 = 0. 

If 𝑥 = 2 then   tan𝑡 = 1  and  𝑡 = 𝜋/4. 

We differentiate 

𝑥′(𝑡) = (2tan𝑡)′ =
2

cos2𝑡
 

Then 

                                                    𝑉1 = 𝜋 ∫ (2cos2𝑡)2 ∙
2

cos2𝑡
𝑑𝑡

𝜋
4

0

= 8𝜋 ∫ cos4𝑡 ∙
1

cos2𝑡
𝑑𝑡 =

𝜋
4

0

 

= 8𝜋 ∫ cos2𝑡 𝑑𝑡 =

𝜋
4

0

8𝜋 ∫
1 + cos2𝑡

2
 𝑑𝑡 =

𝜋
4

0

 

= 4π ∫ (1 + cos2𝑡)𝑑𝑡 =

π
4

0

4π (𝑡 +
1

2
sin2𝑡)|

0

π
4

= 

= 4π (
𝜋

4
+

1

2
) = 𝜋2 + 2𝜋 ≈ 16.15  cub. units 

The volume of the whole solid is 

𝑉 = 2𝑉1 ≈ 32.3 cub. units  
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7.10 Application of Definite Integral: Area of Surface of Revolution  

 

DETAILED DESCRIPTION: 

Definite integrals can be applied to calculate the area of surface of revolution. The chapter 

demonstrate the application of a special formula of calculation of this area for cases if an arc 

revolves about the x-axis or about the y-axes. The formula can be transformed for curves that 

are given by the parametric equations. The content is supplied by the examples with a graphs 

constructed with GeoGebra applet. The exercises that relay to the topic are attached at the end 

of the lesson. 

AIM: to demonstrate the calculation of the area of surface of revolution in Cartesian coordinate 

system.  

 

1. Students understand the application of definite integral to solve geometry tasks. 

2. Students can apply computer aids to construct geometric shapes and surfaces. 

3. Students can calculate the area of surface of revolution. 

 

 

Prior Knowledge: basic rules of integration and differentiation; Newton-Leibniz formula; 
properties of a functions; the construction of the graphs of a functions; the three dimensional 
construction of surfaces; algebra and trigonometry formulas.   
 
Relationship to real maritime problems: Calculation of surface of revolution is an important 

part at the design of different parts of mechanical equipment. For instance, to increase the 

operational efficiency of centrifugal pump it is useful the calculation of surfaces of revolution 

for blade construction as an integral part of pump. The satellite dish has the shape of a solid of 

revolution. The calculation of its surface is necessary to detect the amount of paint required to 

cover the surface.   

 

Content 

1. Formula for calculation of a surface of revolution 

2. Revolution about the 𝑦-axis 

3. The surface area of a solid of revolution for parametrically given curve 

4. Exercises 

5. Solutions 

Appendix: calculation of integral 
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7.10.1 Formula for calculation of a surface of revolution 

The function 𝑦 = 𝑓(𝑥) is represent on the Cartesian coordinate plane (see figure 1.1). An arc 

of the function over the interval [𝑎, 𝑏] revolves about the 𝑥-axis and it forms the surface (see 

figure 1.2). The area of a surface of revolution we can calculate by the formula 

𝑺 = 𝟐𝝅 ∫ 𝒇(𝒙)√𝟏 + (𝒇′(𝒙))𝟐

𝒃

𝒂

𝒅𝒙 

 

Figure 1.1 

 

 

Figure 1.2 

 

Example 1.1 A truncated cone is formed by the straight line 3𝑥 + 4𝑦 = 0  revolving about the 

𝑥-axis over the interval [4,8]. Calculate the lateral surface area of the cone! 

Solution 

We construct the graph of a function (see figure 1.3) and the cone (see figure 1.4). 
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Figure 1.3 

 

 

Figure 1.4 

 

It is necessary to differentiate given function to apply the formula 

𝑦′ = (
3

4
𝑥)′ =

3

4
 

The lateral surface area of a cone is 

                                        𝑆 = 2𝜋 ∫
3

4
𝑥√1 + (

3

4
)

2
8

4

𝑑𝑥 =
3

2
𝜋 ∫ 𝑥√

25

16

8

4

𝑑𝑥 = 

=
15

8
𝜋 ∫ 𝑥

8

4

𝑑𝑥 =
15

8
𝜋

𝑥2

2
|

8

4
=

15

16
𝜋(64 − 16) = 5𝜋  square units 
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7.10.2 Revolution about the 𝒚-axis 

If an arc of a function 𝑦 = 𝑓(𝑥) (see figure 1.1) revolves about the 𝑦-axis, we have to express 

the inverse function with respect of the argument 𝑦, that is, 𝑥 = 𝑔(𝑦).  We detect the 

appropriate projection interval [𝑐, 𝑑] of the arc on the 𝑦-axis (see figure 2.1). Then the formula 

of the area of a surface of revolution (see figure 2.2) is  

𝑺 = 𝟐𝝅 ∫ 𝒈(𝒚)√𝟏 + (𝒈′(𝒚))𝟐

𝒅

𝒄

𝒅𝒚 

 

Figure 2.1 

 

Figure 2.2 

 

Example 2.1 

Find the area of the surface obtained by rotating the curve 𝑦 = 𝑥2 on the interval [0, 2] around 

the 𝑦−axis.  
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Solution 

The arc and the surface are presented on figures 2.3 and 2.4. We rewrite the equation 

of the curve as a function with respect to the argument 𝑦. 

𝑥 = 𝑔(𝑦) = √𝑦 

The derivative of a function with respect to the argument 𝑦 is 

𝑥′ =
1

2√𝑦
 

 

               

Figure 2.3                                                                Figure 2.4 

 

We detect the projection of the arc to the 𝑦-axis as interval [0, 4].  Then the integral for 

calculation of a surface of revolution is 

                                        𝑆 = 2𝜋 ∫ √𝑦 ∙ √1 + (
1

2√𝑦
)

24

0

𝑑𝑦 = 2𝜋 ∫ √𝑦 ∙ √1 +
1

4𝑦

4

0

𝑑𝑦 = 

= 2𝜋 ∫ √𝑦 ∙
√4𝑦 + 1

2√𝑦

4

0

𝑑𝑦 = 𝜋 ∫ √4𝑦 + 1

4

0

𝑑𝑦 = 

=
𝜋

4
∫ √4𝑦 + 1

4

0

𝑑(4𝑦 + 1) = 

=
𝜋

4

(4𝑦 + 1)
3
2

3
2

|
4

0
=

𝜋

6
(√17

3
− 1) ≈ 36.18  sq. units 
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7.10.3 The surface area of a solid of revolution for parametrically given curve  

The formula for calculating the surface area in the Cartesian coordinates are  

𝑺 = 𝟐𝝅 ∫ 𝒇(𝒙)√𝟏 + (𝒇′(𝒙))𝟐

𝒃

𝒂

𝒅𝒙 

Let us recall the formula for calculation of the length of an arc that is defined by the function            

𝑦 = 𝑓(𝑥) above the interval [𝑎, 𝑏] 

𝑳 = ∫ 𝒅𝒔

𝒃

𝒂

 

By expressing the differential of the arc 𝑑𝑠 we have 

𝐿 = ∫ √1 + (𝑓′(𝑥))2

𝑏

𝑎

𝑑𝑥 

So the formula for calculation of a surface of revolution we can rewrite in the following way 

𝑺 = 𝟐𝝅 ∫ 𝒇(𝒙)𝒅𝒔

𝒃

𝒂

 

Let the curve is defined by the parametric equations 

{
𝑥 = 𝑥(𝑡)
𝑦 = 𝑦(𝑡)

 

Let the parameter 𝑡 belongs to the interval 𝑡 ∈ [𝛼, 𝛽]. In this case the differential of the arc we 

can calculate in the following way 

𝑑𝑠 = √�̇�2 + �̇�2 𝑑𝑡 

The formula for calculation the surface area when the curve is revolving around the 𝑥-axis is 

𝑺 = 𝟐𝝅 ∫ 𝒚(𝒕)

𝜷

𝜶

𝒅𝒔 = 𝟐𝝅 ∫ 𝒚(𝒕)√�̇�𝟐 + �̇�𝟐

𝜷

𝜶

𝒅𝒕 

Let us solve similar problem as formulated in the example 1.1. Here we will express the line 

segment in parametric form. 

 

Example 3.1  

The segment of a straight line 𝑦 =
𝑥

2
 above the interval [2, 6] (see figure 3.1) is rotating around 

the 𝑥-axis. It forms the lateral surface of a truncated cone. Calculate the total surface of the 

cone! 
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Figure 3.1 

Solution 

To calculate the total area of a surface of truncated cone (see figure 3.2), it is necessary 

to calculate its lateral surface area and the area of the upper and lower bases. The upper 

and lower bases are the circles with the radius r= 1  and  𝑅 = 3. The base area will be 

calculated using the circle area formula. The lateral surface area will be calculated by 

an integral. 

Let us transform the expression of the function 𝑦 =
𝑥

2
 into a parametric form 

{
𝑥 = 𝑡

𝑦 = 𝑡/2;     2 ≤ 𝑡 ≤ 6 

We now differentiate both functions and compose the formula for calculation of the 

lateral area of the surface formed by segment rotating around the 𝑥 −axis (see figure 

3.2) 

�̇� = 1;     �̇� =
1

2
 

𝑆 = 2𝜋 ∫
𝑡

2
√1 +

1

4
𝑑𝑡

6

2

 

 

Figure 3.2 
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The area of a surface of revolution is 

                                                       𝑆 = 2𝜋 ∫
𝑡

2
√

5

4
𝑑𝑡

6

2

=
√5𝜋

2
∫ 𝑡𝑑𝑡 = 

6

2

 

=
√5𝜋

2
∙

𝑡

2

2

|
6

2
=

√5𝜋

4
(36 − 4) = 8√5𝜋  sq. units 

The total surface area of a given cone is 

𝑆𝑇 = 𝑆 + 𝜋𝑟2 + 𝜋𝑅2 = 8√5𝜋 + 10𝜋 ≈ 87.61  sq. units 

 

Example 3.2 

Parametrically given curve revolves around the x-axis and form the surface. Calculate the area 

of this surface if the parameter 𝑡 changes in the interval [0, 1]. Analytic expression of the curve 

is  

{
𝑥 = 𝑡3

𝑦 = 𝑡2 

Solution 

Let us differentiate the functions and compose the integral 

�̇� = 3𝑡2;  �̇� = 2𝑡 

𝑆 = 2𝜋 ∫ 𝑡2√9𝑡4 + 4𝑡2

1

0

𝑑𝑡 

We will simplify the expression under the square root and use substitution 

𝑆 = 2𝜋 ∫ 𝑡2 ∙ 𝑡 ∙ √9𝑡2 + 4

1

0

𝑑𝑡 = |
𝑢2 = 9𝑡2 + 4 𝑢𝑑𝑢 = 9𝑡𝑑𝑡

𝑢1 = 2 𝑢2 = √13
| = 

=
2𝜋

81
∫ (𝑢2 − 4) ∙ 𝑢 ∙ 𝑢 𝑑𝑢

√13

2

=
2𝜋

81
∫ (𝑢4 − 4𝑢2) 𝑑𝑢

√13

2

= 

=
2𝜋

81
(

𝑢5

5
−

4𝑢3

3
) |

√13

2
=

2𝜋

81
(

√13
5

5
−

4√13
3

3
−

25

5
+

4 ∙ 23

3
) ≈ 4.19 sq. units 

The surface we can see in the figure 3.3. 
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Figure 3.3 

 

7.10.4 Exercises 

1. Calculate the area of the surface obtained by the circle 𝑥2 + 𝑦2 = 4 rotating around the 

𝑥-axis. 

2. Calculate the area of the surface obtained by the arc of a function  𝑦 = 𝑒−𝑥 about the 

interval [0, 3] rotating around 𝑥-axis. 

3. Find the area of the surface obtained by rotating the curve 𝑦 = arccos𝑥 on the interval 

[−1, 1] around the 𝑦−axis.  

4. The arc of the cycloid rotates around the 𝑥-axis. Find the area of this surface if the 

parametric equations of the cycloid are 

{
𝑥 = 2(𝑡 − sin𝑡)
𝑦 = 2(1 − cos𝑡)

 

5. Find the area of the arc of astroid revolving around the 𝑦-axis 

{
𝑥 = 3cos3𝑡
𝑦 = 3sin3𝑡

;     0 ≤ 𝑡 ≤
𝜋

4
 

7.10.5 Solutions 

1. Calculate the area of the surface obtained by the circle 𝑥2 + 𝑦2 = 4 rotating around the 

𝑥-axis. 

Solution   

We construct the circle.  
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Figure 5.1 

Let us choose the upper part of the circle line on the interval where  −2 ≤ 𝑥 ≤ 2 (see figure 

5.1). The equation of this curve is     𝑦 = √4 − 𝑥2 

This curve forms the sphere while the arc is rotating around the 𝑥-axis (see figure 5.2). 

We differentiate the function and simplify the expression 1 + 𝑦′2 

𝑦′ =
−2𝑥

2√4 − 𝑥2
=

−𝑥

√4 − 𝑥2
 

1 + 𝑦′2 = 1 +
𝑥2

4 − 𝑥2
=

4

4 − 𝑥2
 

 

 

Figure 5.2 

For calculation of a surface area of the sphere we apply the formula 
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𝑺 = 𝟐𝝅 ∫ 𝒇(𝒙)√𝟏 + (𝒇′(𝒙))𝟐

𝒃

𝒂

𝒅𝒙 

The integral for a given function is 

                                                       𝑆 = 2𝜋 ∫ √4 − 𝑥2

2

−2

√
4

4 − 𝑥2
𝑑𝑥 = 

= 4𝜋 ∫ 𝑑𝑥

2

−2

= 4𝜋𝑥|
2

−2
= 16𝜋  sq. units 

 

2. Calculate the area of the surface obtained by the arc of a function  𝑦 = 𝑒−𝑥 about the 

interval [0, 3] rotating around 𝑥-axis. 

Solution 

We construct the graph of a given function (see figure 5.3). 

 

Figure 5.3 

The derivative of the function 𝑦 = 𝑒−𝑥 is 

𝑦′ = (𝑒−𝑥)′ = −𝑒−𝑥 

We compose the integral for calculation of the area of a revolution surface (see figure 5.4) 

                         𝑆 = 2𝜋 ∫ 𝑒−𝑥√1 + 𝑒−2𝑥

3

0

𝑑𝑥 = |
𝑡 = 𝑒−𝑥 𝑑𝑡 = −𝑒−𝑥𝑑𝑥

𝑡1 = 𝑒0 = 1 𝑡2 = 𝑒−3 | = 
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= −2𝜋 ∫ √1 + 𝑡2

𝑒−3

1

𝑑𝑡 = 

= −2𝜋 ∙
1

2
(𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2|)|

𝑒−3

1

= 

= −𝜋 (𝑒−3√1 + 𝑒−6 + 𝑙𝑛 |𝑒−3 + √1 + 𝑒−6| − √2 − 𝑙𝑛|1 + √2|)

≈ 6.9  sq. units 

 

Figure 5.4 

Comment. The integral  

∫ √1 + 𝑡2 𝑑𝑡 =
1

2
(𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2|) + 𝐶 

can be solved using integration by parts (see Appendix at the end of this chapter). 

 

3. Find the area of the surface obtained by rotating the curve 𝑦 = arccos𝑥 on the 

interval[−1, 1] around the 𝑦−axis.  

Solution 

The curve is given on the segment [−1, 1] on 𝑥-axis (see figure 5.5).  Let us find the 

projection of the curve onto the 𝑦-axis – it is the segment  𝐴𝐶 =  [0, 𝜋]. We express the 

inverse function 𝑥 with respect to the argument 𝑦 and find the derivative 

𝑥 = 𝑥(𝑦) = cos𝑦 

𝑥′ = −sin𝑦 
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                       Figure 5.5                                                                          Figure 5.6 

 

The curve rotating about the 𝑦-axis create symmetrical two-part surface (see figure 5.6). 

Therefore, we split the surface into two equal parts and calculate the surface area of one 

part, where the argument 𝑦 changes from 0 to 
𝜋

2
. For calculation the surface area we use 

the formula 

𝑺 = 𝟐𝝅 ∫ 𝒈(𝒚)√𝟏 + (𝒈′(𝒚))𝟐

𝒅

𝒄

𝒅𝒚 

The integral for calculation of the surface area of one part is 

                                                     𝑆1 = 2𝜋 ∫ cos𝑦√1 + sin2𝑦

𝜋
2

0

𝑑𝑦 = 

= |
𝑡 = sin𝑦; 𝑑𝑡 = cos𝑦𝑑𝑦

𝑡1 = sin0 = 0; 𝑡2 = sin
𝜋

2
= 1

| = 2𝜋 ∫ √1 + 𝑡2𝑑𝑡

1

0

= 

= 𝜋 (𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2|)|
1

0
= 

= 𝜋(√2 + 𝑙𝑛|1 + √2|) ≈ 10.34  sq. units 

The total area of a given surface of revolution is 

                          𝑆 = 2𝜋(√2 + 𝑙𝑛|1 + √2|) ≈ 20.68  sq. units 
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4. The arc of the cycloid rotates around the 𝑥-axis. Find the area of this surface if the 

parametric equations of the cycloid are 

{
𝑥 = 2(𝑡 − sin𝑡)
𝑦 = 2(1 − cos𝑡)

 

Solution 

An arc of the cycloid is given if the range of a parameter 𝑡 ∈  [0, 2𝜋] (see the arc AB in the figure 

5.7). 

  

Figure 5.7 

To calculate the surface of revolution (see figure 5.8) we apply the formula 

𝑺 = 𝟐𝝅 ∫ 𝒚(𝒕)√�̇�𝟐 + �̇�𝟐

𝜷

𝜶

𝒅𝒕 

At first we will calculate the derivatives 

�̇� = 2(1 − cos𝑡)
�̇� = 2sin𝑡            

 

Now we will simplify the expression applying algebra and trigonometry formulas 

                            �̇�2 + �̇�2 = 4(1 − cos𝑡)2 + 4sin2𝑡 = 

= 4(1 − 2cos𝑡 + cos2𝑡 + sin2𝑡) = 

= 4(2 − 2cos𝑡) = 16sin2
𝑡

2
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Figure 5.8 

The surface area formed by the first arc of cycloid revolving around the 𝑥-axis is 

                                        𝑆 = 2𝜋 ∫ 2(1 − cos𝑡)√16sin2
𝑡

2

2𝜋

0

𝑑𝑡 = 

= 4𝜋 ∫ 2sin2
𝑡

2
∙ 4sin

𝑡

2

2𝜋

0

𝑑𝑡 = 

= | 𝑢 = cos
𝑡

2
; 𝑑𝑢 = −

1

2
sin

𝑡

2
𝑑𝑡

𝑢1 = cos0 = 1 𝑢2 = cos𝜋 = −1
| = 

= −64𝜋 ∫ (1 − 𝑢2)

−1

1

𝑑𝑢 = 64𝜋 (
𝑢3

3
− 𝑢)|

−1

1
= 

= 64𝜋 ∙
4

3
≈ 268.1  sq. units 

 

5. Find the area of the arc of astroid revolving around the 𝑦-axis 

{
𝑥 = 3cos3𝑡
𝑦 = 3sin3𝑡

;     0 ≤ 𝑡 ≤
𝜋

4
 

Solution 

Let us construct the astroid and show the given arc (see figure 5.9). We calculate the 

derivatives and simplify the expression to be written under the square root 
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�̇� = −9cos2𝑡 ∙ sin𝑡        
�̇� = 9sin2𝑡 ∙ cos𝑡            

 

                                                          �̇�2 + �̇�2 = 81cos4𝑡sin2𝑡 + 81sin4𝑡𝑐𝑜𝑠2𝑡 = 

               = 81cos2𝑡sin2𝑡(sin2𝑡 + 𝑐𝑜𝑠2𝑡) = 

               = 81sin2 𝑡𝑐𝑜𝑠2𝑡 

 

Figure 5.9 

We create an integral to calculate the area of a surface (see figure 5.10) 

                                                       𝑆 = 2𝜋 ∫ 3cos3𝑡√81sin2 𝑡𝑐𝑜𝑠2𝑡

𝜋
4

0

𝑑𝑡 = 

= 2𝜋 ∙ 27 ∫ cos3𝑡 sin𝑡 cos𝑡

𝜋
4

0

𝑑𝑡 = 

= |

𝑢 = cos𝑡 𝑑𝑢 = −sin𝑡𝑑𝑡

𝑢1 = cos0 = 1 𝑢2 = cos
𝜋

4
=

√2

2

| = 

= −54𝜋 ∫ 𝑢4

√2
2

1

𝑑𝑢 = −54 𝜋
𝑢5

5
|

√2

2

1

= 

= −
54𝜋

5
(

√2

8
− 1) ≈ 14.05  sq. units 
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Figure 5.10 

 

 

 

Appendix: calculation of integral 

In the solution of exercises 2 and 3 we used a special formula 

∫ √1 + 𝑡2 𝑑𝑡 =
1

2
(𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2|) + 𝐶 

The integral can be evaluated by the method of integration by parts. Let us denote the given 

integral by 𝐼𝑛𝑡 and apply the method 

                                                     𝐼𝑛𝑡 = ∫ √1 + 𝑡2 𝑑𝑡 = |
𝑢 = √1 + 𝑡2 𝑑𝑢 =

𝑡

√1 + 𝑡2
𝑑𝑡

𝑑𝑣 = 𝑑𝑡 𝑣 = 𝑡

| = 

= 𝑡√1 + 𝑡2 − ∫
𝑡 ∙ 𝑡

√1 + 𝑡2
𝑑𝑡 = 𝑡√1 + 𝑡2 − ∫

𝑡2 + 1 − 1

√1 + 𝑡2
𝑑𝑡 = 

= 𝑡√1 + 𝑡2 − ∫
𝑡2 + 1

√1 + 𝑡2
𝑑𝑡 + ∫

𝑑𝑡

√1 + 𝑡2
𝑑𝑡 = 

= 𝑡√1 + 𝑡2 − ∫ √1 + 𝑡2 𝑑𝑡 + 𝑙𝑛 |𝑡 + √1 + 𝑡2| 

Looking at the given expression, its beginning and end, we have obtained the equation 

                                                     𝐼𝑛𝑡 =  𝑡√1 + 𝑡2 − ∫ √1 + 𝑡2 𝑑𝑡 + 𝑙𝑛 |𝑡 + √1 + 𝑡2| 

or 
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𝐼𝑛𝑡 =  𝑡√1 + 𝑡2 − 𝐼𝑛𝑡 + 𝑙𝑛 |𝑡 + √1 + 𝑡2| 

We can express unknown 𝐼𝑛𝑡 from the equation 

                                                     2𝐼𝑛𝑡 =  𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2| 

                                                       𝐼𝑛𝑡 =
1

2
( 𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2|) 

or 

                             ∫ √1 + 𝑡2 𝑑𝑡 =
1

2
(𝑡√1 + 𝑡2 + 𝑙𝑛 |𝑡 + √1 + 𝑡2|) + 𝐶 
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7.11 Application of definite integrals 
 

Example 1.  In a real situation, the movement of the ship at any time moment is affected by the energy 

of the water waves (heave, pitch and roll motions), the wind, as well as the speed of the ship itself. The 

resulting motion of a ship is sinusoidal. Suppose that the speed of a ship is given by the function 𝑣(𝑡) =

𝜌cos (
𝜋

2
𝑡) knots per hour, where 𝜌 is some specific constant. Compute the average speed of the ship 

between 13 hours. 

Solution. The formula for calculation of the average value of a function 𝑓(𝑥) on the interval [𝑎, 𝑏] is  

𝑨𝑽𝑹 =
𝟏

𝒃 − 𝒂
∫ 𝒇(𝒙) 𝒅𝒙

𝒃

𝒂

 

The given time interval is 𝑡 ∈ [0,13]. We apply the formula to calculate the average speed of a ship 

                                                  𝑣𝑎𝑣𝑟 =
1

13
∫ 𝜌 cos (

𝜋

2
𝑡)  𝑑𝑡 =

13

0

 

=
𝜌

13
∙

1

𝜋
sin (

𝜋

2
𝑡)|

13

0
=

𝜌

13𝜋
 (kph) 

Answer. The average speed of a ship is 
𝜌

13𝜋
  knots per hour. 

 

Example 2. Root mean square voltage 

Either DC or AC is used to operate different electric equipment. To determine the AC equivalent of DC 

in a circuit, the root mean square (RMS) voltage is calculated: 

𝑽𝑹𝑴𝑺 = √
𝟏

𝑻
∫(𝒗(𝒕))𝟐

𝑻

𝟎

𝒅𝒕 

where 𝑣(𝑡) is a periodic function representing the character of the voltage over the period T. The RMS 

value of the AC voltage can be measured by the voltmeter.  

Task. The voltage is defined as a saw-tooth function over the interval [0,2𝜋] with the peak voltage value 

𝑉𝑝 = 170 𝑉: 

𝑣(𝑡) = {

𝑉𝑝

𝜋
𝑡,    𝑡 ∈ (0, 𝜋)                        

−𝑉𝑝 +
𝑉𝑝

𝜋
(𝑡 − 𝜋),    𝑡 ∈ (𝜋, 2𝜋)

 

Calculate the RMS value of the given function. 

Solution 

The graph of the function is presented in the figure 1. 
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Figure 1 

 

It can be assumed that function is symmetric according the origin of the coordinate system. It will be 

enough to calculate the voltage RMS in interval [0, 𝜋] 

                                            𝑉𝑅𝑀𝑆 = √
1

𝜋
∫ (

170

𝜋
𝑡)

2
𝑇

0

𝑑𝑡 = 

= √
1702

𝜋3
∫ 𝑡2

𝜋

0

𝑑𝑡 = 

= √
1702

𝜋3
∙

𝑡3

3
|

𝜋

0
= 170√

𝜋3

𝜋3 ∙ 3
= 

=
170

√3
≈ 98.15 𝑉 

Answer. The RMS voltage in the circuit is 98.15 volts. 

 

Example 3.  The cylindrical container with the lengths L must be covered by a metallic sheet of width 𝐿. 

How long must be the sheet if the cross section of the container can be described in polar coordinates 

as 𝑟 = 2(1 + 𝑐𝑜𝑠𝜑)?  

Solution. To calculate the length of the metallic sheet it is necessary to find the length of the polar curve 

(see figure 2).  

 

Figure 2 
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Let us apply the formula for calculation of the length of a curve 

𝑳 = ∫ √𝒓𝟐 + (𝒓′)𝟐𝒅𝝋

𝜷

𝜶

 

The half of the given curve is in the limits 

0 ≤ 𝜑 ≤ 𝜋 

The length of the whole curve 

    𝐿 = 2 ∫ √(2 + 2cos𝜑)2 + (2sin𝜑)2 𝑑𝜑

𝜋

0

= 

= 4 ∫ √1 + 2cos𝜑 + cos2𝜑 + sin2𝜑 𝑑𝜑 =

𝜋

0

 

= 4 ∫ √2 + 2cos𝜑 𝑑𝜑 =

𝜋

0

4 ∫ √4cos2
𝜑

2
 𝑑𝜑 =

𝜋

0

 

= 8 ∫ cos
𝜑

2
 𝑑𝜑 =

𝜋

0

32sin
𝜑

2
|

𝜋

0
= 32 

Answer. From the metallic sheet must be cut the 32 units long piece. 

 

Example 4. The chain is hanging between two points in a distance 50 m. Such chain has a shape called 

the catenary. The catenary curve is described by the hyperbolic cosine function 

𝑓(𝑥) = 𝑎 cosh
𝑥

𝑎
 

The parameter 𝑎 depends on the gravity, density of a chain, cross section of a thread, and tension forces. 

Calculate the length of given chain! 

Solution. We can apply the formula of arc length 

𝒍 = ∫ √𝟏 + 𝒚′𝟐𝒅𝒙

𝒃

𝒂

 

The derivative of hyperbolic cosine is 

𝑓′(𝑥) = 𝑎 sinℎ
𝑥

𝑎
∙

1

𝑎
= sinℎ

𝑥

𝑎
 

Let us construct a corresponding curve in the Cartesian coordinate system (see figure 3). The 

curve is symmetric with respect to the 𝑦-axis. 
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Figure 3 

Hence the length of the chain is  

𝑙 = 2 ∫ √1 + sinh2
𝑥

𝑎

25

0

𝑑𝑥 

= 2 ∫ √cosh2
𝑥

𝑎

25

0

𝑑𝑥 = 

= 2 ∫ cosh
𝑥

𝑎

25

0

𝑑𝑥 = 

= 2𝑎 sinh
𝑥

𝑎
|
25

0
= 

= 2𝑎 sinh
25

𝑎
 

Answer. The chain is  2𝑎 sinh
25

𝑎
 units long. 

 

Example 5. The portholes are designed in such a way that when a ship cruises into the middle of the 

seas, one can get the best possible view from the ship’s porthole. For this, the height of the portholes 

is strategically decided. 

Task.  A circular porthole on the vertical side of a ship has a radius 1 feet. If the centre of the porthole 

is 5 feet below the surface of the water, what is the fluid force on the window? 

Solution. Cartesian coordinate system can be used for description of given situation. The centre of the 

porthole is 5 feet below the surface of the water (see figure 4). 
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Figure 4 

We describe the porthole by the equation where 𝑅 = 1 𝑓𝑡 

𝑥2 + 𝑦2 = 𝑅2 

We will construct horizontal slices, because the pressure is varying from the bottom of the porthole to 

the top. The height of one such slice is ∆𝑦 (see figure 4). The length of the slice is expressed using the 

function 𝐿(𝑦) from the equation of a circle  

𝐿(𝑦) = √1 − 𝑦2 − (−√1 − 𝑦2) = 2√1 − 𝑦2 

The slice has the distance 𝑦 from the 𝑥-axis and distance ℎ = 5 − 𝑦 from the level of water. Density of 

sea water is 𝑤 = 63.93 𝑙𝑏𝑠/𝑓𝑡3. We apply the integral formula for fluid force on the porthole that is 

submerged vertically 

𝑭(𝒚) = 𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆 ∙ 𝒂𝒓𝒆𝒂 = (𝒘 ∙ 𝒅𝒆𝒑𝒕𝒉)  ∙  𝒂𝒓𝒆𝒂 = 𝒘 ∫ 𝒉𝑳(𝒚)𝒅𝒚

𝒃

𝒂

 

In the given case the integral is 

𝐹(𝑦) = 63.93 ∫(5 − 𝑦)2√1 − 𝑦2𝑑𝑦

1

−1

 

We separate the integral in two parts  

𝐹(𝑦) = 127.86 ∫ 5 ∙ √1 − 𝑦2𝑑𝑦

1

−1

− 127.86 ∫ 𝑦

1

−1

√1 − 𝑦2𝑑𝑦 

The integrand of second integral is an odd function. Integral has symmetric limits thus the value of it is 

0. We use trigonometric substitution in the first integral 

let  𝑦 = sin𝑢 then  𝑑𝑦 = cos𝑢 𝑑𝑢 

New limits of integration are 
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𝑦1 = −1 then   − 1 = sin𝑢;   𝑢1 = −
𝜋

2
 

Similarly 

𝑢2 =
𝜋

2
 

We substitute 

     127.86 ∫ 5 ∙ √1 − 𝑦2𝑑𝑦
1

−1
= 639.3 ∫ √1 − sin2𝑢 cos𝑢 𝑑𝑢

𝜋

2

−
𝜋

2

= 

= 639.3 ∫ cos2𝑢 𝑑𝑢

𝜋
2

−
𝜋
2

=
639.3

2
∫(1 − cos2𝑢)𝑑𝑢

𝜋
2

−
𝜋
2

= 

=
639.3

2
(𝑢 −

1

2
sin2𝑢)|

𝜋

2

−
𝜋

2

= 319.65 𝜋   𝑙𝑏𝑠  

Answer. The fluid force on the porthole is 319.65 𝜋 pound units of mass.  

 

 

Example 6. Definite integrals are useful to describe a real situation. Many real applications begin with 
data that are not represented by a function but that are stored in a table. In this case, the definite 
integral used in the calculation formula is approximated by the Trapezoidal Rule: 
 

∫ 𝒇(𝒙)

𝒃

𝒂

𝒅𝒙 ≈
𝒃 − 𝒂

𝟐𝒏
(𝒇(𝒂) + 𝟐𝒇(𝒙𝟏) + 𝟐𝒇(𝒙𝟐) + ⋯ + 𝟐𝒇(𝒙𝒏−𝟏) + 𝒇(𝒃)) 

 

Given interval [𝑎, 𝑏] is divided in 𝑛 equal parts to split the region under the graph of a function. Every 
part is replaced by a trapezoid (see figure 5). 

  

 
Figure 5 

 
 

Task. A pump connected to a generator operates at a varying rate, depending on how much power is 
being drawn from the generator. The rate (gallons per minute) at which the pump operates is recorded 
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at 5-minute intervals for one hour as shown in a table. How many gallons were pumped during that 
hour? 

 
Pumping rates 

time 0 5 10 15 20 25 30 35 40 45 50 55 60 
gallons 0 40 45 52 44 46 55 52 50 48 46 50 52 

 
 
Solution. Let 𝑅(𝑡),   0 ≤ 𝑡 ≤ 60  be the pumping rate as a continuous function of time for the hour. 
We can partition the hour into short subintervals of length ∆𝑡 = 5 on which the rate is nearly constant 
and form the sum 

∑ 𝑅(𝑡𝑖)∆𝑡

12

𝑖=0

 

 

as an approximation to the amount pumped during the hour. This reveals the integral formula for the 
number of gallons pumped to be 

𝑔𝑎𝑙𝑙𝑜𝑛𝑠 = ∫ 𝑅(𝑡)

60

0

𝑑𝑡 

 

We have no formula for 𝑅(𝑡) in this instance, but the 13 equally spaced values in table enable us to 
estimate the integral with the Trapezoidal Rule: 

 

∫ 𝑅(𝑡)

60

0

𝑑𝑡 ≈
5

2
(0 + 2 ∙ 40 + 2 ∙ 45 + ⋯ + 2 ∙ 50 + 52) = 

       =
5

2
∙ 2(40 + 45 + 52 + 44 + 46 + 55 + 52 + 50 + 48 + 46 + 50 + 26) = 

       =  5 ∙ 554 = 2770 
 

Answer. The total amount pumped during the hour is about 2770 gallons. 

 

Example 7. According to the requirements of MARPOL on every vessel has been installed sewage 

treatment unit. Air compressors blow the air through the sewage continuously. Bio-active substances 

must be supplied in the unit periodically. The time period of supplement can be computed according to 

the mean decay time of sewage 

𝑡̅ = ∫ 𝑡 ∙ 𝑘𝑒−𝑘𝑡𝑑𝑡,

∞

0

 

where k is the constant that characterises the velocity of the decay. In the formula is used an improper 

integral (see the topic: Improper integrals). 

Solution 

                                      𝑡̅ = ∫ 𝑡 ∙ 𝑘𝑒−𝑘𝑡𝑑𝑡

∞

0

= lim
𝑇→∞

∫ 𝑡 ∙ 𝑘𝑒−𝑘𝑡𝑑𝑡 =

𝑇

0
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= ||

   let    𝑢 = 𝑡;        𝑑𝑣 = 𝑘𝑒−𝑘𝑡𝑑𝑡                 

then 𝑑𝑢 = 𝑑𝑡;   𝑣 = 𝑘 ∫ 𝑒−𝑘𝑡𝑑𝑡 = −
𝑘𝑒−𝑘𝑡

𝑘

𝑇

0

|| = 

= lim
𝑇→∞

(−𝑡𝑒−𝑘𝑡|𝑇
0

+ ∫ 𝑒−𝑘𝑡𝑑𝑡

𝑇

0

) = 

= lim
𝑇→∞

(𝑇𝑒−𝑘𝑇 −
𝑒−𝑘𝑡

𝑘
|

𝑇

0
) = 

= lim
𝑇→∞

(𝑇𝑒−𝑘𝑇 −
𝑒−𝑘𝑇

𝑘
+

1

𝑘
) =

1

𝑘
 

Answer. Expected decay time of sewage per time unit is 𝑡̅ =
1

𝑘
 . 

 

Example 8. The blades of a bow thruster has a shape of polar rose with 4 petals. It is necessary to cover 

the blades with antifouling paint. For this purpose it is necessary to calculate the surface area of the 

bow thruster blades if the lengths of one blade is 75 cm. 

Solution. The shape of the blades is given by the formula 𝑟 = 0.75cos2𝜑 (see figure 6) 

 

Figure 6 

 

The polar rose is symmetric with respect to the polar axis OA and all petals are equal. Therefore it is 

enough to calculate a half of the area of one petal. We will calculate the angle between the polar axis 

and that ray where the value of the given function is zero: 

0.75cos2𝜑 = 0 

cos2𝜑 = 0;  2𝜑 =
𝜋

2
;   𝜑 =

𝜋

4
 

The surface area of polar rose can be calculated in the following way 



Innovative Approach in Mathematical Education for Maritime Students 

2019-1-HR01-KA203-061000 

174  

                                                   𝑆 = 4 ∙ 2 ∙
1

2
∫(0.75cos2𝜑)2

𝜋
4

0

𝑑𝜑 = 

= 4 ∙
9

16
∫ cos22𝜑

𝜋
4

0

𝑑𝜑 = 

=
9

4
∫

1 + cos4𝜑

2

𝜋
4

0

𝑑𝜑 = 

=
9

8
(𝜑 +

1

4
sin4𝜑)|

𝜋

4
0

= 

=
9

8
(

𝜋

4
+ 0) = 

=
9𝜋

32
 (𝑚2) ≈ 0.88 (𝑚2)  

Answer. Surface area of one side of the blades of bow thruster is approximately 0.88 𝑚2. 

 

 

Example 9. Determine the centre of mass of a wire of length 𝐿 lying on the interval [0, 𝐿] if the line 

density at point 𝑥 is 𝜌(𝑥) = 𝑥. 

Solution. The centre of mass �̅� can be calculated by a formula 

𝒙 =
𝑴𝒙=𝟎

𝒎
=

∫ 𝒙 ∙ 𝝆(𝒙)
𝑳

𝟎
𝒅𝒙

∫ 𝝆(𝒙)
𝑳

𝟎
𝒅𝒙

 

where m is the mass of the wire and 𝑀𝑥=0 is the moment of the one-dimensional object around zero.  

Given example presents the wire for that the mass is not distributed symmetrically. The density 

increases moving to the right along the wire. 

The mass of wire is 

𝑚 = ∫ 𝑥 𝑑𝑥

𝐿

0

=
𝑥2

2
|

𝐿

0
=

𝐿2

2
 

The moment about the origin is 

𝑀𝑥=0 = ∫ 𝑥2

𝐿

0

𝑑𝑥 =
𝑥3

3
|

𝐿

0
=

𝐿3

3
 

We calculate the centre of mass 
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�̅� =
𝐿3

3
:
𝐿2

2
=

2

3
𝐿 

Answer. The centre of mass is located two-thirds of the way along the wire from the left end. 

 

Example 10. Calculation of the centre of mass or centroid is one of the most important issues in the 

stability theory of ships. For instance, the centroid of the operating water plane is the point about which 

the ship will list and trim. This point is called the centre of flotation and it acts as a fulcrum or pivot point 

for a floating ship. 

Task. Find the centroid of the half disc of a radius R. 

Solution. Let us place the given half disc in the centre of coordinate system (see figure 7). 

 

Figure 7 

The coordinates of the centroid of the figure 0 ≤ 𝑦 ≤ 𝑓(𝑥) given over the interval 𝑎 ≤ 𝑥 ≤ 𝑏 can be 

calculated by the following formulas 

𝒙 =
𝑴𝒙=𝟎

𝑺
=

∫ 𝒙𝒇(𝒙)
𝒃

𝒂
𝒅𝒙

∫ 𝒇(𝒙)
𝒃

𝒂
𝒅𝒙

 

�̅� =
𝑴𝒚=𝟎

𝑺
=

𝟏
𝟐 ∫ (𝒇(𝒙))𝟐𝒃

𝒂
𝒅𝒙

∫ 𝒇(𝒙)
𝒃

𝒂
𝒅𝒙

 

By symmetry the 𝑥-coordinate of the centroid is �̅� = 0. The area of the half disc is 𝑆 =
𝜋𝑅2

2
. We 

calculate the 𝑦-coordinate 

                                                   �̅� =
𝑀𝑦=0

𝑆
=

1
2 ∫ (√𝑅2 − 𝑥2))

2𝑅

−𝑅
𝑑𝑥

𝜋𝑅2

2

= 

=
1

𝜋𝑅2
∫(𝑅2 − 𝑥2)

𝑅

−𝑅

𝑑𝑥 = 

=
1

𝜋𝑅2
(𝑅2𝑥 −

𝑥3

3
)|

𝑅
−𝑅

= 
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=
1

𝜋𝑅2
(𝑅3 −

𝑅3

3
+ 𝑅3 −

𝑅3

3
) = 

=
4𝑅3

3𝜋𝑅2
=

4𝑅

3𝜋
 

 

Answer. The centroid of a half disc is (0,
4𝑅

3𝜋
). 

 

Example 11.  What is the surface area of an uncovered 10 meters long tank in the form of right cylinder 

and with the flat basis of radius 2 meters? How many kilograms of paint would be needed to paint the 

outside of the tank? One kilogram of paint will cover 10 square meters. 

Solution. Let us put the tank in the coordinate system. Let the axis of symmetry of the tank coincides 

with 𝑥-axis (see figure 8). The surface of revolution is created by the straight line 𝑦 = 2 rotating around 

the 𝑥-axis about the interval [0, 10]. 

 

 

Figure 8 

The formula for calculation of the surface area is 

𝑺 = 𝟐𝝅 ∫ 𝒇(𝒙)√𝟏 + (𝒇′(𝒙))𝟐 𝒅𝒙

𝒃

𝒂

 

According to this formula the surface area of the cylinder is 

𝑆 = 2𝜋 ∫ 2

10

0

√1 + (2′)2𝑑𝑥 = 4𝜋 ∫ 𝑑𝑥

10

0

= 40𝜋 (𝑚2) 

The area of both basis we will calculate as the area of a circle 

𝑆2 = 2 ∙ 𝜋𝑅2 = 8𝜋 (𝑚2) 

The amount A of the paint to cover whole tank is 
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𝐴 = (40𝜋 + 8𝜋): 10 = 4.8𝜋 ≈ 15.07 (𝑘𝑔) 

Answer. To paint the tank it is necessary to use 15. 07 kg of paint. 

 

Example 12. It is necessary to detect the weight of a homogeneous iron part that is turned in the shape 

of ellipsoid. The axes of the part are 16, 6, and 6 centimetres long.  

Solution. According to the fact that two axes of the given ellipsoid are identical, a given part can be 

considered as a 3-dimensional shape formed by an ellipse rotating around its longest axis. Let us apply 

the canonical equation of the ellipse (see figure 9) 

𝑥2

64
+

𝑦2

9
= 1 

      

                                Figure 9                                                                               Figure 10 

 

The mass of the solid of revolution given on the interval [𝑎, 𝑏] with the density 𝜌(𝑥) (see figure 10) we 

can calculate by the formula 

𝒎 = 𝝅 ∫ 𝝆(𝒙) 𝒚𝟐𝒅𝒙

𝒃

𝒂

 

The homogeneous iron part has a constant density 𝜌 = 7.2 𝑔/𝑐𝑚3. Hence, the mas of the given part is  

                                                               𝑚 = 𝜋 ∫ 7.2 ∙ 9 (1 −
𝑥2

64
)

8

−8

𝑑𝑥 = 

= 2𝜋 ∙ 64.8 ∫ (1 −
𝑥2

64
) 𝑑𝑥 =

8

0

 

= 129.6𝜋 (𝑥 −
𝑥3

192
)|

8

0
= 

= 129.6𝜋 (8 −
8

3
) = 

= 691.2𝜋 ≈ 2171.47 (𝑔) 

Answer. The part weighs 2171.47 grams. 
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Example 13. A tanker is a specialized vessel for the transportation of liquid cargo and liquefied gases at 

very low temperatures. Tankers include gas carriers - for the carriage of liquefied gases and chemical 

carriers - for the carriage of liquid chemical cargo.  By design, these are single-deck vessels, in which the 

cargo tanks are tanks or barrels. Some barrels have the form of sphere (see figures 11, 12). 

 

Figure 11 

 

Figure 12 

 

Task. Let the radius of a spherical tank is 𝑅 and the part of the tank not filled with liquefied gas is a 

spherical segment with a height ℎ. Find the volume of the liquid gas in the tank. 

Solution. The volume of the liquefied gas in the tanks can be calculated as a volume of the solid of 

revolution.  

We should find the volume of the solid formed by rotating curve x2 + y2 = R2  (𝑥 ≥ 0) between          

𝑦 = −𝑅 and 𝑦 = 𝑅 − ℎ  about the y-axis (see figure 13). 

     

Figure 13 

x

R

y

-R

R-h

h

0
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We use the formula  

𝑽𝒚 = 𝝅 ∫ (𝒙(𝒚))
𝟐

𝒅𝒚
𝒅

𝒄

 

From the equation x2 + y2 = R2 we express x2 = 𝑅2 − 𝑦2. 

Then 

                                                              Vy = π ∫ (R2 − y2)dy
R−h

−R

= 

= π (R2y −
y3

3
)|

−R

R−h

= 

= π (R2(R − h) −
(R − h)3

3
) − π (−R3 +

R3

3
) = 

= π (R3 − R2h −
R3 − 3R2h + 3Rh2 − h3

3
+  

2R3

3
) = 

= π (
4R3

3
− Rh2 +

h3

3
) 

Or 

Vgas = π
4R3

3
− πh2 (R −

h

3
) 

Answer. The Volume of a gas in the spherical tank is   π
4R3

3
− πh2 (R −

h

3
) units of volume. 

 

 

Example 14. The volume of tanks in which crude oil and oil products are transported to the port by rail 

(see figure 14) can also be calculated as the volume of a body of revolution. 

 

Figure 14 

Tanks with many different head types are manufactured for specific application. The heads can be flat, 

hemispherical, semi-ellipsoidal, thorispherical, and of other types. The tank head is often convex on one 

end and concave on the other end. 
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Task. Let the tank can be described as a cylinder of length 𝐿 + 2𝑎 and radius 𝑅, and the ends of cylinder 

there are ellipsoidal (see figure 15). Calculate the volume of the tank! 

       

Figure 15 

Solution. The volume of tank is equal  

  

V = Vcylinder + 2𝑉𝑒𝑙 

Vcylinder = 𝜋𝑅2𝐿 

The volume of the head of a tank 𝑉𝑒𝑙 can be find as the volume of the solid formed by rotating the area 

bounded by quarter of ellipse  
𝑥

𝑎2

2
+

𝑦2

𝑅2 = 1  and 𝑥 = 0  between 𝑥 = 0 and 𝑥 = 𝑎  about the 𝑥-axis 

(see figure 16). 

 

Figure 16 

 

We can use the formula 

𝑽𝒙 = 𝝅 ∫ (𝒚(𝒙))
𝟐

𝒅𝒙
𝒃

𝒂

 

Let us express the term 𝑦2  from the equation   
𝑥2

𝑎2
+

𝑦2

𝑅2
= 1    

𝑦2 = R2 (1 −
𝑥2

𝑎2
) 

Then  

                                                             Vel = 𝜋 ∫ R2 (1 −
𝑥2

𝑎2
) 𝑑𝑥

𝑎

0

= 

R

L

aa

V
el

V
el

R

a

y

x
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= 𝜋𝑅2 ∫ (1 −
𝑥2

𝑎2
) 𝑑𝑥

𝑎

0

= 

= 𝜋𝑅2 (x −
𝑥3

3𝑎2
)|

0

𝑎

= 

= 𝜋𝑅2 (a −
𝑎3

3𝑎2
) = 

=  𝜋𝑅2 (a −
a

3
) = 

=
2𝜋𝑅2𝑎

3
 

As a result, the volume of tank is equal  

V = 𝜋𝑅2𝐿 +
4𝜋𝑅2𝑎

3
= 𝜋𝑅2 (𝐿 +

4𝑎

3
) 

Answer. The volume of the tank is 𝜋𝑅2 (𝐿 +
4𝑎

3
) units of volume. 

 

Example 15. Suppose that a water tank is shaped like a right circular truncated  cone with the smaller 

base at the bottom, and has height 8 meters and radius 3 meters at the top, and radius 1 meter at the 

bottom. If the tank is full, how much work is required to pump all the water out over the top?  

Solution. The work can be calculated by the formula: 

𝑾 = ∫ 𝑭(𝒙)

𝒃

𝒂

𝒅𝒙 

where the continuous function 𝐹(𝑥) represents the force moving an object along 𝑥-axis about the 

interval [𝑎, 𝑏]. 

Let us construct the cross-section of the tank (see figure 17) 

 

Figure 17 
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A thin disc of water at the height ℎ above the bottom of the tank has the radius 𝑟. We will express radius 

in the terms of ℎ by similar triangles. Let the height of whole cone is 8 + 𝑥 meters long (see figure 18). 

Then  

𝑥

1
=

𝑥 + ℎ

𝑟
=

8 + 𝑥

3
 

We get 𝑥 = 4  and  𝑟 =
4+ℎ

4
 

The volume of the disc is  

𝑑𝑉 = 𝜋𝑟2𝑑ℎ = 𝜋
(4 + ℎ)2

16
𝑑ℎ 

The weight or the force of gravity on the mass of water in the disc is 

𝑑𝐹 = 𝜌𝑔 𝜋
(4 + ℎ)2

16
𝑑ℎ 

Here 𝜌 is the density of a water in kilograms per cubic meter (approximately  𝜌 ≈ 1000) and 𝑔 is the 

constant of gravity. The water in disc must be raised a distance 8 − ℎ meters. The work required to do 

this 

𝑑𝑊 = 𝜌𝑔 𝜋
(4 + ℎ)2

16
(8 − ℎ)𝑑ℎ 

The total work we calculate in the following way 

                                                 𝑊 = ∫ 𝜌𝑔 𝜋
(4 + ℎ)2

16
(8 − ℎ)𝑑ℎ =

8

0

 

=
𝜌𝑔 𝜋

16
∫(4 + ℎ)2(8 − ℎ)

8

0

𝑑ℎ = 

=
𝜌𝑔 𝜋

16
∫(128 + 48ℎ − ℎ3) 𝑑ℎ =

8

0

 

=
𝜌𝑔 𝜋

16
(128ℎ + 24ℎ2 −

ℎ4

4
)|

8

0
= 

=
𝜌𝑔 𝜋

16
∙ 1536 ≈ 

≈
1000 ∙ 9.8 ∙ 3.14 ∙ 1536

16
≈ 

≈ 19.7 ∙ 105  (N ∙ m) 

Answer. The work required to pump out the water from the tank is 19,7 ∙ 105 Newton-meters. 
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7.12 Worksheet of self-control 

Application of basic formulas of indefinite integrals 

Identify the appropriate answer/answers for every integral and fill in the formula applied 

Nr Exercise Identificator of correct answer Formula 

1 ∫ 4𝑥3 𝑑𝑥   

2 2 ∫(√𝑥 + sin𝑥) 𝑑𝑥   

3 ∫
5

9 + 𝑥2
 𝑑𝑥   

4 ∫ (6𝑥 +
2

𝑥
) 𝑑𝑥   

5 ∫ 𝑥4 ∙ √𝑥43
𝑑𝑥   

6 
1

√3
∫

3𝑑𝑥

sin2𝑥
   

7 ∫ √
8

𝑥2 − 8
𝑑𝑥   

8 ∫ 7cosh𝑥 𝑑𝑥   

9 ∫
3𝑥

3
𝑑𝑥   

10 ∫
6𝑑𝑥

11√36 − 𝑥2
   

Possible answers 

A.  
1

3
∙ 3𝑥 ∙

1

ln3
+ 𝐶;    B. −√3cot𝑥 + 𝐶;   C. 5arctan𝑥 + 𝐶;   D. 𝑥4 + 𝐶;   E. 7sinh𝑥 + 𝐶;     

F.  
1

√𝑥
− 2cos𝑥 + 𝐶;   G. 2√2ln|𝑥 + √𝑥2 − 8| + 𝐶;   H. 1

2

3
arctan

𝑥

3
+ 𝐶;I. 

6

11
arcsin

𝑥

6
+ 𝐶;  

  J. 
4

3
𝑥3/2 + 2(−cos𝑥) + 𝐶;  K. 

𝑥5

5
∙

( √𝑥3 )
5

5
+ 𝐶;   L. 

6𝑥

ln6
+ 2ln𝑥 + 𝐶;M. 2 (

2√𝑥3

3
− cos𝑥) + 𝐶;  

 N. 
3𝑥

ln27
+ 𝐶;   O. 12𝑥2 + 𝐶;   P. 

3

19
∙ 𝑥

19

3 + 𝐶; Q. 
3

√3
(−cot𝑥) + 𝐶;  R. 3𝑥6 ∙

√𝑥
3

19
+ 𝐶 
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Answers 

No Exercise Identificator of 

correct answer 
Formula 

1 ∫ 4𝑥3 𝑑𝑥 D ∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛

𝑛 + 1
+ 𝐶 

2 2 ∫(√𝑥 + sin𝑥) 𝑑𝑥 J, M ∫ 𝑥𝑛𝑑𝑥 =
𝑥𝑛

𝑛 + 1
+ 𝐶; ∫ sin𝑥𝑑𝑥 = −cos𝑥 + 𝐶 

3 ∫
5

9 + 𝑥2  𝑑𝑥 H ∫
𝑑𝑥

𝑎2 + 𝑥2
=

1

𝑎
arctan

𝑥

𝑎
+ 𝐶 

4 ∫ (6𝑥 +
2

𝑥
) 𝑑𝑥 L ∫ 𝑎𝑥𝑑𝑥 =

𝑎𝑥

𝑙𝑛𝑎
+ 𝐶;  ∫

𝑑𝑥

𝑥
= ln𝑥 + 𝐶 

5 ∫ 𝑥4 ∙ √𝑥43
𝑑𝑥 P, R ∫ 𝑥𝑛𝑑𝑥 =

𝑥𝑛

𝑛 + 1
+ 𝐶 

6 
1

√3
∫

3𝑑𝑥

sin2𝑥
 B, Q ∫

𝑑𝑥

sin2𝑥
= −cot𝑥 + 𝐶 

7 ∫ √
8

𝑥2 − 8
𝑑𝑥 G ∫

𝑑𝑥

√𝑥2 − 𝑎2
= ln |𝑥 + √𝑥2 − 𝑎2| + 𝐶 

8 ∫ 7cosh𝑥 𝑑𝑥 E ∫ cosh𝑥 𝑑𝑥 = sinh𝑥 + 𝐶 

9 ∫
3𝑥

3
𝑑𝑥 A,  N ∫ 𝑎𝑥𝑑𝑥 =

𝑎𝑥

ln𝑎
+ 𝐶  

10 ∫
6𝑑𝑥

11√36 − 𝑥2
 I ∫

𝑑𝑥

√𝑎2 − 𝑥2
= arcsin

𝑥

𝑎
+ 𝐶 
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7.13 Worksheet of self-control 

Test about the differentials 

Part I Calculate the given differentials and mark the correct answer! 

    

1. 
𝑑(sin𝑥)         

  A (cos𝑥)′𝑑𝑥 B cos𝑥 C cos𝑥 𝑑𝑥 D sin2𝑥 𝑑𝑥 

2. 𝑑(4𝑥3 − 8𝑥)         

  A 3 ∙ 4(𝑥2 − 8) 𝑑𝑥 B (12𝑥2 − 8) 𝑑𝑥 C (𝑥4 − 8) 𝑑𝑥 D 4(3𝑥2 − 2)𝑑𝑥 

3. 𝑑(5𝑥)         

  A 5𝑥𝑙n5 𝑑𝑥 B 𝑥5𝑥−1 𝑑𝑥 C 
5𝑥

5
 𝑑𝑥 D 5 𝑑𝑥 

4. 𝑑(cos3𝑥)         

  A 3cos𝑥 𝑑𝑥 B −3sin𝑥 𝑑𝑥 C −sin3𝑥 𝑑𝑥 D −3sin3𝑥 𝑑𝑥 

5. 𝑑(artctan𝑥)         

  A 
𝑑𝑥

1 + 𝑥2
 B 

1

𝑐𝑜𝑠2𝑥
𝑑𝑥 C 

1

1 + 𝑥
𝑑𝑥 D 

𝑑𝑥

1 + cos𝑥2
 

 

Part II Convert the given expression into the differential of a function. Mark the correct answer! 

1. 12

√1 − 𝑥2
𝑑𝑥         

  A 𝑑 (√1 − 𝑥2) B 𝑑 (24√1 + 𝑥2) C 12𝑑(arcsin𝑥) D 𝑑 (
arcsin𝑥

12
) 

2. 16𝑥3𝑑𝑥         

  A 𝑑(4𝑥4) B 16𝑑(𝑥3) C 𝑑(48𝑥2) D 𝑑(8𝑥4) 

3. 
21 𝑑𝑥

cos27𝑥
         

  A 21𝑑(tan𝑥) B 𝑑(3tan7𝑥) C 3𝑑(tan27𝑥) D 𝑑 (
7

cos3𝑥
) 

4. 
𝑑𝑥

√𝑥
         

  A 𝑑(2√𝑥) B 𝑑(𝑥1/2) C 
3

2
𝑑 (

1

√𝑥3
) D 

1

2
𝑑(𝑥) 

5. 
ln4𝑥

𝑥
𝑑𝑥         

  A 𝑑 (
ln5𝑥

𝑥
) B 𝑑(4 ln𝑥) C 𝑑(5ln5𝑥) D 

1

5
𝑑(ln5𝑥) 
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Answers 

Part I 

1 – C;  2 – B;  3 – A; 4 – D; 5 – A 

 

Part II 

1 – C; 2 – A; 3 – B; 4 – A; 5 – D 

 

Solution 

Part I                 Apply the formula  𝒅𝒚 = 𝒚′ 𝒅𝒙  𝑖𝑓  𝑦 = 𝑦(𝑥) 

 

Example 1 

𝑑(sin𝑥) = (sin𝑥)′𝑑𝑥 = cos𝑥 𝑑𝑥 

Example 2 

𝑑(4𝑥3 − 8𝑥) = (4𝑥3 − 8𝑥)′𝑑𝑥 = (12𝑥2 − 8) 𝑑𝑥 

Example 3 

𝑑(5𝑥) = (5𝑥)′𝑑𝑥 = 5𝑥ln5𝑑𝑥 

Example 4 

𝑑(cos3𝑥) = (cos3𝑥)′𝑑𝑥 = −sin3𝑥 ∙ 3 𝑑𝑥 = −3sin3𝑥 𝑑𝑥 

Example 5 

𝑑(arctan𝑥) = (arctan𝑥)′𝑑𝑥 =
1

1 + 𝑥2 𝑑𝑥 

 

Part II                   Apply the formula  𝒚′ 𝒅𝒙 = 𝒅𝒚  𝑖𝑓  𝑦 = 𝑦(𝑥) 

 

Example 1 

12

√1 − 𝑥2
𝑑𝑥 = 12(arcsin𝑥)′𝑑𝑥 = 12 𝑑(arcsin𝑥) 

Example 2 

16𝑥3𝑑𝑥 = 4(4𝑥3)𝑑𝑥 = 4(𝑥4)′ 𝑑𝑥 = 𝑑(4𝑥4) 

Example 3 

21 𝑑𝑥

cos27𝑥
= 3(tan7𝑥)′𝑑𝑥 = 𝑑(3tan7𝑥) 

Example 4 

𝑑𝑥

√𝑥
=

2𝑑𝑥

2√𝑥
= 2(√𝑥)′ 𝑑𝑥 = 𝑑(2√𝑥) 

Example 5 

ln4𝑥

𝑥
𝑑𝑥 =

1

5
∙

5ln4𝑥

𝑥
𝑑𝑥 =

1

5
(ln5𝑥)′𝑑𝑥 =

1

5
𝑑(ln5𝑥) 
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7.14 Worksheet of self-control 

Integration by parts 

∫ 𝒖 𝒅𝒗 = 𝒖 ∙ 𝒗 − ∫ 𝒗 𝒅𝒖 

1) For given integrals choose the functions for 𝒖-substitution: 

𝑥;    8𝑥;    2𝑥 + 1;   𝑥2;    sin𝑥;    cos𝑥;   cos26𝑥;   𝑒𝑥;     ln𝑥;    lg𝑥;    arcsin𝑥;     arctan𝑥 

2) Solve following integrals 1; 3; 4; 6 

Nr Integral 𝒖-function 

1 ∫ 𝑥2cos𝑥 𝑑𝑥 𝑢 = 𝑥2 

2 ∫ 8𝑥 sin𝑥 𝑑𝑥 
 

3 ∫ 𝑥 arctan𝑥 𝑑𝑥 
 

4 ∫(2𝑥 + 1)𝑒𝑥𝑑𝑥 
 

5 ∫ 8𝑥 ln𝑥 𝑑𝑥 
 

6 ∫
lg𝑥

𝑥2
 𝑑𝑥 

 

7 ∫ 𝑒𝑥sin𝑥 𝑑𝑥 
 

8 ∫
6𝑥

cos26𝑥
𝑑𝑥 

 

9 ∫(2𝑥 + 1)ln𝑥 𝑑𝑥 
 

10 ∫ arcsin𝑥 𝑑𝑥 
 

11 ∫ 𝑥2ln𝑥 𝑑𝑥 
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Answers 

1) 

Nr Integral 𝒖-function 

1 ∫ 𝑥2cos𝑥 𝑑𝑥 𝑢 = 𝑥2 

2 ∫ 8𝑥 sin𝑥 𝑑𝑥 𝑢 = 8𝑥 

3 ∫ 𝑥 arctan𝑥 𝑑𝑥 𝑢 = arctan𝑥 

4 ∫(2𝑥 + 1)𝑒𝑥𝑑𝑥 𝑢 = 2𝑥 + 1 

5 ∫ 8𝑥 ln𝑥 𝑑𝑥 𝑢 = ln𝑥 

6 ∫
lg𝑥

𝑥2  𝑑𝑥 𝑢 = lg𝑥 

7 ∫ 𝑒𝑥sin𝑥 𝑑𝑥 𝑢 = sin𝑥 𝑜𝑟 𝑢 = 𝑒𝑥 

8 ∫
6𝑥

cos26𝑥
𝑑𝑥 𝑢 = 𝑥 

9 ∫(2𝑥 + 1)ln𝑥 𝑑𝑥 𝑢 = ln𝑥 

10 ∫ arcsin𝑥 𝑑𝑥 𝑢 = arcsin𝑥 

11 ∫ 𝑥2ln𝑥 𝑑𝑥 𝑢 = lg𝑥 

 

2) Solutions 

𝟏. ∫ 𝑥2cos𝑥 𝑑𝑥 = |
𝑢 = 𝑥2 𝑑𝑢 = 2𝑥𝑑𝑥

𝑑𝑣 = cos𝑥𝑑𝑥 𝑣 = ∫ cos𝑥 𝑑𝑥 = sin𝑥
| = 

= 𝑥2sin𝑥 − ∫ 2𝑥sin𝑥 𝑑𝑥 = |
𝑢 = 2𝑥 𝑑𝑢 = 2𝑑𝑥

𝑑𝑣 = sin𝑥𝑑𝑥 𝑣 = ∫ sin𝑥𝑑𝑥 = −cos𝑥
| = 

= 𝑥2sin𝑥 − (−2𝑥cos𝑥 + 2 ∫ cos𝑥𝑑𝑥) = 
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= 𝑥2sin𝑥 + 2𝑥 cos𝑥 − 2sin𝑥 + 𝐶 

𝟑.  ∫ 𝑥 arctan𝑥 𝑑𝑥 = ||
𝑢 = arctan𝑥 𝑑𝑢 =

𝑑𝑥

1 + 𝑥2

𝑑𝑣 = 𝑥𝑑𝑥 𝑣 = ∫ 𝑥𝑑𝑥 =
𝑥2

2

|| = 

=
𝑥2

2
arctan𝑥 −

1

2
∫

𝑥2

1 + 𝑥2
𝑑𝑥 = 

=
𝑥2

2
arctan𝑥 −

1

2
∫

𝑥2 + 1 − 1

1 + 𝑥2
𝑑𝑥 = 

=
𝑥2

2
arctan𝑥 −

1

2
∫ 𝑑𝑥 +

1

2
∫

𝑑𝑥

1 + 𝑥2
= 

=
𝑥2

2
arctan𝑥 −

1

2
𝑥 +

1

2
arctan𝑥 + 𝐶 

 

𝟒. ∫(2𝑥 + 1)𝑒𝑥𝑑𝑥 = |
𝑢 = 2𝑥 + 1 𝑑𝑢 = 2𝑑𝑥

𝑑𝑣 = 𝑒𝑥𝑑𝑥 𝑣 = ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥| = 

= (2𝑥 + 1)𝑒𝑥 − 2 ∫ 𝑒𝑥𝑑𝑥 = 

= (2𝑥 + 1)𝑒𝑥 − 2𝑒𝑥 + 𝐶 

 

𝟔.  ∫
lg𝑥

𝑥2
 𝑑𝑥 = |

𝑢 = lg𝑥 𝑑𝑢 =
1

𝑥ln10
𝑑𝑥

𝑑𝑣 =
𝑑𝑥

𝑥2
𝑣 = ∫

𝑑𝑥

𝑥2
=

−1

𝑥

| = 

= −
1

𝑥
lg𝑥 +

1

ln10
∫

1

𝑥
∙

1

𝑥
𝑑𝑥 = 

= −
1

𝑥
lg𝑥 −

1

𝑥 ln10
+ 𝐶 
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7.15 Worksheet of self-control 

Test about the integrals of composite functions 

 

The argument of the composite functions is a linear function 

∫ 𝒇(𝒂𝒙 + 𝒃)𝒅𝒙 =
𝟏

𝒂
∫ 𝒇(𝒂𝒙 + 𝒃)𝒅(𝒂𝒙 + 𝒃) =

𝟏

𝒂
𝑭(𝒂𝒙 + 𝒃) + 𝑪 

 

Mark the correct answer 

1 ∫ 𝑒3𝑥 𝑑𝑥  

  
A 

1

3
𝑒3𝑥 + 𝐶 

B 

3𝑒3𝑥 + 𝐶 

C 

𝑒3𝑥 + 𝐶 

D 

3𝑒𝑥 + 𝐶 

2 ∫ 𝑠𝑖𝑛
𝑥

4
𝑑𝑥  

  
A 

4𝑠𝑖𝑛
𝑥

4
+ 𝐶 

B 

4cosx 

C 

−
1

4
𝑠𝑖𝑛

𝑥

4
+ 𝐶 

D 

−4𝑐𝑜𝑠
𝑥

4
+ 𝐶 

3 ∫(𝑥 + 10)5 𝑑𝑥  

  
A 

5(𝑥 + 10)4 + 𝐶 

B 

(𝑥 + 10)6

6
+ 𝐶 

C 

(𝑥 + 10)6 + 𝐶 

D 
1

5
(𝑥 + 10)5 + 𝐶 

4 ∫
2𝑑𝑥

𝑥 − 7
  

  
A 

(𝑥 − 7)2 + 𝐶 

B 

−(𝑥 − 7)2

2
+ 𝐶 

C 

2𝑙𝑛|𝑥 − 7| + 𝐶 

D 

2(𝑥 − 7) + 𝐶 

5 ∫
4𝑑𝑥

𝑐𝑜𝑠2(8𝑥 + 𝜋)
  

  
A 

4𝑠𝑖𝑛2(8𝑥 + 𝜋) + 𝐶 

B 
32

𝑠𝑖𝑛2(8𝑥 + 𝜋)
+ 𝐶 

C 
4

8
𝑡𝑎𝑛(8𝑥 + 𝜋) + 𝐶 

D 
1

2
𝑡𝑎𝑛2(8𝑥 + 𝜋) + 𝐶 

6 ∫
𝑑𝑥

7𝑥 + 1
  

  
A 

7𝑙𝑛|𝑥 + 1| + 𝐶 

B 
1

7
𝑙𝑛|7𝑥 + 1| + 𝐶 

C 

(7𝑥 + 1)−2

−2
+ 𝐶 

D 

𝑙𝑛|7𝑥 + 1| + 𝐶 

7 ∫
𝑑𝑥

16𝑥2 + 1
  

  
A 

1

4
𝑎𝑟𝑐𝑡𝑎𝑛4𝑥 + 𝐶 

B 
1

8
𝑙𝑛 |

4𝑥 + 1

4𝑥 − 1
| + 𝐶 

C 

𝑎𝑟𝑐𝑡𝑎𝑛
4𝑥

16
+ 𝐶 

D 
1

16
𝑙𝑛 |

𝑥 + 0.25

𝑥 − 0.251
| + 𝐶 
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8 ∫ 5𝑐𝑜𝑠6𝑥 𝑑𝑥  

  
A 

30𝑐𝑜𝑠𝑥 + 𝐶 

B 
5

6
𝑐𝑜𝑠6𝑥 + 𝐶 

C 

5𝑠𝑖𝑛6𝑥 + 𝐶 

D 

−5𝑐𝑜𝑠6𝑥 + 𝐶 

9 ∫ 22−4𝑥 𝑑𝑥  

  
A 

−4 ∙ 22−4𝑥 + 𝐶 

B 

−4 ∙ 22−4𝑥𝑙𝑛2 

C 
(2 − 4𝑥)21−4𝑥 + 𝐶 

D 

−
22−4𝑥

4𝑙𝑛2
+ 𝐶 

10 ∫
𝑑𝑥

(12 − 𝑥)10
  

  

A 
−11

(12 − 𝑥)11
+ 𝐶 

B 
−1

9(12 − 𝑥)9
+ 𝐶 

C 

(12 − 𝑥)−10

−10
+ 𝐶 

D 

10(12 − 𝑥)9 + 𝐶 

11 ∫
11𝑑𝑥

√2 − 9𝑥
  

  

A 

22√2 − 9𝑥

−9
+ 𝐶 

B 
−99

2(2 − 9𝑥)2
+ 𝐶 

C 

11√2 − 9𝑥 + 𝐶 

D 
−11

9
(2 − 9𝑥)1/2 + 𝐶 

12 ∫
𝑑𝑥

1 − 𝑥
  

  
A 

𝑙𝑛|1 − 𝑥| + 𝐶 

B 

𝑙𝑛|𝑥 − 1| + 𝐶 

C 

−𝑙𝑛|1 − 𝑥| + 𝐶 

D 

−𝑙𝑛|𝑥 + 1| + 𝐶 

 

 

Answers 

1 – A;   2 – D;  3 – B; 4 – C;  5 – C;  6 – B;  7 – A;  8 – B;  9 – D;  10 – B;  11 – A;  12 – C 
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7.16 Worksheet of self-control 

Puzzle – Quote by mathematician 

Solve the following tasks. The sequence of the answers reveals a famous quote by Leopold 

Kronecker. 

1 the integers 2 the work 3 made 4 Pythagoras 

5 the rhombus 6 of 7 else 8 zero 

9 human 10 triangle 11 God 12 reflects 

13 infinity 14 all 15 logic 16 man 

17 is true 18 the numbers 19 belief  20 the purpose 

21 his 22 random 23 constructions 24 is 

 

1. Calculate 

99 ∫ (3 + 2𝑥)8𝑑𝑥

−1

−2

 

2. Detect the exponent 𝑛 of the expression 

𝑥4 ∙ √𝑥3

𝑥0.5 ∙ 𝑥2 = 𝑥𝑛  

3. Calculate the lower limit 𝑎 of the integral 

∫
12 𝑑𝑥

𝑥

𝑒3

𝑎

= 36 

4. Calculate 

∫ 28 𝑐𝑜𝑠𝑥 𝑑𝑥

𝜋
6⁄

0

 

5. Calculate the value of the differential if 
𝑥 = 5 and ∆𝑥 = 0.1 

𝑑(𝑥3 − 5𝑥 + 1) 

 

6. Find the value of a multiplier C 

𝐶 ∫
𝑑𝑥

2𝑐𝑜𝑠2𝑥

𝜋
4⁄

0

= 12 

7. What is the constant 𝐴 for the 
trigonometric identity? 

𝑠𝑖𝑛2𝑥 =
1 − 𝑐𝑜𝑠2𝑥

𝐴
 

8. Calculate 

42 ∫
𝑐𝑜𝑠6𝑥

𝑠𝑖𝑛8𝑥

𝜋
2⁄

𝜋
4⁄

𝑑𝑥 

9. Calculate 

∫
3𝑥3 − 𝑥2 − 𝑥 + 3

𝑥 + 1

3

1

𝑑𝑥 
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